Pearce DA (2012) Extremophiles in Antarctica: life at low temperatures. In: Stan-Lotter H, Fendrihan S (eds) Adaption of microbial life to environmental extremes (pp. 87–118). Springer, Vienna. pp. 87–118
Parnikoza IY, Maidanuk DN, Kozeretska IA (2007) Are Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. migratory relicts? Cytol Genet 41:226–229
Article
Google Scholar
Biersma EM, Torres-Díaz C, Molina-Montenegro MA, Newsham KK, Vidal MA, Collado GA, Acuña-Rodríguez IS, Ballesteros GI, Figueroa ChC, Goodall-Copestake WP, Leppe MA, Cuba-Díaz M, Valladares MA, Pertierra LR, Convey P (2020) Multiple late-Pleistocene colonisation events of the Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora. J Bioge 47(8):1663–1673. https://doi.org/10.1111/jbi.13843
Article
Google Scholar
Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Phys Plantarum 115(4):479–486. https://doi.org/10.1034/j.1399-3054.2002.1150401.x
CAS
Article
Google Scholar
Mosyakin SL, Bezusko LG, Mosyakin AS (2007) Origins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint. Cytol Genet 41(5):308–316
Article
Google Scholar
Theocharis A, Clement C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105
CAS
Article
PubMed
Google Scholar
Zuñiga GE, Alberdi M, Corcuera LJ (1996) Non-structural carbohydrates in Deschampsia antarctica Desv. from South Shetland Islands, maritime Antarctic. Environ Exp Bot 36:393–399
Article
Google Scholar
Bravo LA, Ulloa N, Zuñiga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in Antarctic angiosperms. Physiol Plant 111:55–65
CAS
Article
Google Scholar
Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56:1189–1196
CAS
Article
PubMed
Google Scholar
Chew O, Lelean S, John UP, Spangenberg GC (2012) Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv Plant Cell Environ 35:829–837
CAS
Article
PubMed
Google Scholar
Xiong FS, Mueller EC, Day TA (2000) Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. Am J Bot 87:700–710
CAS
Article
PubMed
Google Scholar
Park AK, Kim I-S, Do H, Kim H, Choi W, Jo S-W, Shin SC, Lee JH, Yoon H-S, Kim H-W (2019) Characterization and structural determination of cold-adapted monodehydroascorbate reductase, MDHAR, from the Antarctic hairgrass Deschampsia antarctica. Curr Comput-Aided Drug Des 9:537
CAS
Google Scholar
Convey P (1996) Reproduction of Antarctic flowering plants. Antarctic Sci 8(2):127–134
Article
Google Scholar
Cavieres LA, Sáez P, Sanhueza C, Sierra-Almeida A, Rabert C, Corcuera LJ, Alberdi M, Bravo LA (2016) Ecophysiological traits of Antarctic vascular plants: their importance in the responses to climate change. Plant Ecol 217(3):343–358. https://doi.org/10.1007/s11258-016-0585-x
Article
Google Scholar
Chwedorzewska KJ, Bednarek PT (2008) Genetic variability in the Antarctic hairgrass Deschampsia antarctica Desv. from maritime Antarctic and sub-Antarctic sites. Polish J Ecol 56:209–216
CAS
Google Scholar
Giełwanowska I, Androsiuk P, Chwedorzewska K, Szandar K (2015) Genetic variability of Colobanthus quitensis from King George Island (Antarctica). Pol Polar Res 281-295.https://doi.org/10.1515/popore−2015−001
Dixit VK, Misra S, Mishra SK, Joshi N, Chauhan PS (2021) Rhizobacteria‐mediated bioremediation: insights and future perspectives. In Parray JA, Mahmoud AHAE, Sayyed R (eds) Soil bioremediation: an approach towards sustainable technology, pp. 193–211. https://doi.org/10.1002/9781119547976.ch9
Flocco CG, Mac Cormack WP, Smalla K (2019) Antarctic soil microbial communities in a changing environment: their contributions to the sustainability of Antarctic ecosystems and the bioremediation of anthropogenic pollution. In: ed. Castro-Sowinski S, The ecological role of micro-organisms in the Antarctic environment. Springer, Cham pp. 133–161.
Yu P, Hochholdinger F (2018) The role of host genetic signatures on root–microbe interactions in the rhizosphere and endosphere. Front Plant Sci 9:1896. https://doi.org/10.3389/fpls.2018.01896
Article
PubMed
PubMed Central
Google Scholar
Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CM, Schenk PM (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:2552. https://doi.org/10.3389/fmicb.2017.02552
Article
PubMed
PubMed Central
Google Scholar
Beckers B, De Beeck MO, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:1–17
Article
Google Scholar
Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598. https://doi.org/10.1007/s13213-010-0117-1
Article
Google Scholar
Arenz BE, Blanchette RA, Farrell RL (2014) Fungal diversity in Antarctic soils. Antarctic terrestrial microbiology. Springer, Berlin, Heidelberg, pp 35–53
Chapter
Google Scholar
Teixeira LC, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4(8):989–1001. https://doi.org/10.1038/ismej.2010.35
Article
PubMed
Google Scholar
Zhang Q, Acuña JJ, Inostroza NG, Duran P, Mora ML, Sadowsky MJ, Jorquera MA (2020) Niche differentiation in the composition, predicted function, and co-occurrence networks in bacterial communities associated with Antarctic vascular plants. Front Microbiol 11:1036. https://doi.org/10.3389/fmicb.2020.01036
CAS
Article
PubMed
PubMed Central
Google Scholar
Molina-Montenegro MA, Ballesteros GI, Castro-Nallar E, Meneses C, Gallardo-Cerda J, Torres-Díaz C (2019) A first insight into the structure and function of rhizosphere microbiota in Antarctic plants using shotgun metagenomic. Polar Biol 42(10):1825–1835. https://doi.org/10.1007/s00300-019-02556-7
Article
Google Scholar
Jones JB. (2001) Laboratory guide for conducting soil tests and plant analysis (No. S593 J65). CRC press.
Tatur A, Myrcha A, Niegodzisz J (1997) Formation of abandoned penguin rookery ecosystems in the maritime Antarctic. Polar Biol 17(5):405–417
Article
Google Scholar
Lunau M, Lemke A, Walther K, Martens-Habbena W, Simon M (2005) An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environl Microb 7(7):961–968. https://doi.org/10.1111/j.1462-2920.2005.00767.x
Article
Google Scholar
Szymańska S, Płociniczak T, Piotrowska-Seget Z, Złoch M, Ruppel S, Hrynkiewicz K (2016) Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiol Res 182:68–79. https://doi.org/10.1016/j.micres.2015.09.007
CAS
Article
PubMed
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1–e1
CAS
Article
PubMed
Google Scholar
Weber KP, Legge RL (2009) One-dimensional metric for tracking bacterial community divergence using sole carbon source utilization patterns. J Microbiol Meth 79(1):55–61. https://doi.org/10.1016/j.mimet.2009.07.020
CAS
Article
Google Scholar
Moyer CL, Morita RY (2007). Psychrophiles and psychrotrophs eLS. https://doi.org/10.1002/9780470015902.a0000402.pub2
Article
Google Scholar
Grzesiak J, Zdanowski MK, Górniak D, Świątecki A, Aleksandrzak-Piekarczyk T, Szatraj K, Nieckarz S-K, M, (2015) Microbial community changes along the Ecology Glacier ablation zone (King George Island, Antarctica). Polar Biol 38(12):2069–2083. https://doi.org/10.1007/s00300-015-1767-z
Article
Google Scholar
Grzesiak J, Kaczyńska A, Gawor J, Żuchniewicz K, Aleksandrzak-Piekarczyk T, Gromadka R, Zdanowski MK (2020) A smelly business: microbiology of Adélie penguin guano (Point Thomas rookery, Antarctica). Sci Total Environ 714:136714. https://doi.org/10.1016/j.scitotenv.2020.136714
CAS
Article
PubMed
Google Scholar
Grzesiak J, Woltyńska A, Zdanowski MK, Górniak D, Świątecki A, Olech MA, Aleksandrzak-Piekarczyk, T. (2021). Metabolic fingerprinting of the Antarctic cyanolichen Leptogium puberulum–associated bacterial community (Western Shore of Admiralty Bay, King George Island, Maritime Antarctica). Microb Ecol, 1-12.https://doi.org/10.1007/s00248-021-01701-2
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Micr 67(5):1613
CAS
Article
Google Scholar
R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Accessed 27 Mar 2021
Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE 3(7):e2702. https://doi.org/10.1371/journal.pone.0002702
CAS
Article
PubMed
PubMed Central
Google Scholar
Dawson W, Hör J, Egert M, van Kleunen M, Pester M (2017) A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization. Front Microbiol 8:975. https://doi.org/10.3389/fmicb.2017.00975
Article
PubMed
PubMed Central
Google Scholar
Ladygina N, Hedlund K (2010) Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol Biochem 42(2):162–168. https://doi.org/10.1016/j.soilbio.2009.10.009
CAS
Article
Google Scholar
Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9:2732. https://doi.org/10.3389/fmicb.2018.02732
Article
PubMed
PubMed Central
Google Scholar
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, KolbT PJ, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
Article
PubMed
Google Scholar
Gallardo-Cerda J, Levihuan J, Lavín P, Oses R, Atala C, Torres-Díaz C, Barrera A, Molina-Montenegro MA (2018) Antarctic rhizobacteria improve salt tolerance and physiological performance of the Antarctic vascular plants. Polar Biol 41(10):1973–1982
Article
Google Scholar
Chen P, Zhang C, Ju X, Xiong Y, Xing K, Qin S (2019) Community composition and metabolic potential of endophytic Actinobacteria from coastal salt marsh plants in Jiangsu. China Front Microbiol 10:1063. https://doi.org/10.3389/fmicb.2019.01063
Article
PubMed
Google Scholar
Gong Y, Bai JL, Yang HT, Zhang WD, Xiong YW, Ding P, Qin S (2018) Phylogenetic diversity and investigation of plant growth-promoting traits of Actinobacteria in coastal salt marsh plant rhizospheres from Jiangsu. China Sys Appl Microbiol 41(5):516–527. https://doi.org/10.1016/j.syapm.2018.06.003
CAS
Article
Google Scholar
Awad NM, Turky AS, Abdelhamid MT, Attia M (2012) Ameliorate of environmental salt stress on the growth of Zea mays L. plants by exopolysaccharides producing bacteria. J Appl Sci Res , 8(4): 2033–2044.
Yu P, He X, Baer M, Beirinckx, S, Tian, T, Moya, YA, Zhang X, Deichmann M, Frey FP, Bresgen V, Li Ch, Razavi BS, Schaaf G, von Wirén N, Su Z, Bucher M, Tsuda K, Goormachtig S, Chen X Hochholdinger, F. (2021). Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants, 1-19.https://doi.org/10.1038/s41477-021-00897-
Pershina E, Valkonen J, Kurki P, Ivanova E, Chirak E, Korvigo I, Provorov N, Andronov E (2015) Comparative analysis of prokaryotic communities associated with organic and conventional farming systems. PLoS ONE 10(12):e0145072. https://doi.org/10.1371/journal.pone.0145072
CAS
Article
PubMed
PubMed Central
Google Scholar
Santos CR, Hoffmam ZB, de Matos Martins VP, Zanphorlin LM, de Paula Assis LH, Honorato RV, Lopes de Oliveira PS, Ruller R, Murakami MT (2014) Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens. J Biol Chem 289(46):32186–32200. https://doi.org/10.1074/jbc.M114.605105
CAS
Article
PubMed
PubMed Central
Google Scholar
Robledo M, Jiménez-Zurdo JI, Velázquez E, Trujillo ME, Zurdo-Piñeiro JL, Ramírez-Bahena MH, Ramos B, Díaz-Mínguez JM, Dazzo F, Martínez-Molina E, Mateos PF (2008) Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots. PNAS 105(19):7064–7069. https://doi.org/10.1073/pnas.0802547105
Article
PubMed
PubMed Central
Google Scholar
Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75(8):2373–2383. https://doi.org/10.2307/1940891
Article
Google Scholar
Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182(1):31–48. https://doi.org/10.1111/j.1469-8137.2008.02751.x
CAS
Article
PubMed
Google Scholar
White JF, Kingsley KL, Verma SK, Kowalski KP (2018) Rhizophagy cycle: an oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms 6(3):95. https://doi.org/10.3390/microorganisms6030095
CAS
Article
PubMed Central
Google Scholar
Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E, Näsholm T, Schmidt S, Lonhienne TG (2010) Turning the table: plants consume microbes as a source of nutrients. PLoS ONE 5(7):e11915. https://doi.org/10.1371/journal.pone.0011915
CAS
Article
PubMed
PubMed Central
Google Scholar
Robles-Aguilar AA, Grunert O, Hernandez-Sanabria E, Mysara M, Meers E, Boon N, Jablonowski ND (2020) Effect of applying struvite and organic n as recovered fertilizers on the rhizosphere dynamics and cultivation of lupine (Lupinus angustifolius). Fornt Plant Sci 11:1752. https://doi.org/10.3389/fpls.2020.572741
Article
Google Scholar
Höflich G, Tauschke M, Kühn G, Rogasik J (2000) Influence of agricultural crops and fertilization on microbial activity and microorganisms in the rhizosphere. J Agron Crop Sci Crop Sci 184(1):49–54. https://doi.org/10.1046/j.1439-037x.2000.00369.x
Article
Google Scholar
Mur LA, Simpson C, Kumari A, Gupta AK, Gupta KJ (2017) Moving nitrogen to the centre of plant defence against pathogens. Ann Bot 119(5):703–709. https://doi.org/10.1093/aob/mcw179
CAS
Article
PubMed
Google Scholar
Benidire L, Khalloufi F, Oufdou K, Barakat M, Tulumello J, Ortet P, Heulin T, Achouak W (2020) Phytobeneficial bacteria improve saline stress tolerance in Vicia faba and modulate microbial interaction network. Sci Total Environ 729:139020. https://doi.org/10.1016/j.scitotenv.2020.139020
CAS
Article
PubMed
Google Scholar
Wang M, Chen S, Chen L, Wang D (2019) Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils. Environ Pollut 252:1609–1621. https://doi.org/10.1016/j.envpol.2019.06.082
CAS
Article
PubMed
Google Scholar
Fan D, Subramanian S, Smith DL (2020) Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana. Sci Rep 10(1):1–18. https://doi.org/10.1038/s41598-020-69713-
Article
Google Scholar
Znój A, Grzesiak J, Gawor J, Gromadka R, Chwedorzewska KJ (2021) Bacterial communities associated with Poa annua roots in central European (Poland) and Antarctic Settings (King George Island). Microorganisms 9(4):811. https://doi.org/10.3390/microorganisms9040811
CAS
Article
PubMed
PubMed Central
Google Scholar
Spaink HP, Kondorosi A, Hooykaas PJ (eds) (2012) The Rhizobiaceae. Molecular Biology of Model Plant-Associated Bacteria Springer, Dordrecht
Google Scholar
Fujihara S, Terakado J, Nishibori N (2006) Accumulation of an aromatic amine, β-phenethylamine, in root nodules of adzuki bean Vigna angularis. Plant Soil 280(1):229–237. https://doi.org/10.1007/s11104-005-3096-4
CAS
Article
Google Scholar
Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50. https://doi.org/10.1111/1758-2229.12181
Article
Google Scholar
Parnikoza I, Kozeretska I, Kunakh V (2011) Vascular plants of the Maritime Antarctic: origin and adaptation. Am J Plant Sci 2(03):381–395. https://doi.org/10.4236/ajps.2011.23044
Article
Google Scholar
Olech M (2002) Plant communities on King George Island. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Ecological Studies (Analysis and Synthesis), vol 154. Springer, Berlin, Heidelberg. pp.215–231 https://doi.org/10.1007/978-3-642-56318-8_12
Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LF, de Hollander M, Garcia AA, Ramírez CA, Raaijmakers MR, JM, (2017) Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J 11(10):2244–2257. https://doi.org/10.1038/ismej.2017.85
Article
PubMed
PubMed Central
Google Scholar
Zachow C, Müller H, Tilcher R, Berg G (2014) Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops—and modern sugar beets. Front Microbiol 5:415. https://doi.org/10.3389/fmicb.2014.00415
Article
PubMed
PubMed Central
Google Scholar