Skip to main content
Log in

Colonization by the Red Imported Fire Ant, Solenopsis invicta, Modifies Soil Bacterial Communities

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The long-standing association between insects and microorganisms has been especially crucial to the evolutionary and ecological success of social insect groups. Notably, research on the interaction of the two social forms (monogyne and polygyne) of the red imported fire ant (RIFA), Solenopsis invicta Buren, with microbes in its soil habitat is presently limited. In this study, we characterized bacterial microbiomes associated with RIFA nest soils and native (RIFA-negative) soils to better understand the effects of colonization of RIFA on soil microbial communities. Bacterial community fingerprints of 16S rRNA amplicons using denaturing gradient gel electrophoresis revealed significant differences in the structure of the bacterial communities between RIFA-positive and RIFA-negative soils at 0 and 10 cm depths. Illumina sequencing of 16S rRNA amplicons provided fine-scale analysis to test for effects of RIFA colonization, RIFA social form, and soil depth on the composition of the bacterial microbiomes of the soil and RIFA workers. Our results showed the bacterial community structure of RIFA-colonized soils to be significantly different from native soil communities and to evidence elevated abundances of several taxa, including Actinobacteria. Colony social form was not found to be a significant factor in nest or RIFA worker microbiome compositions. RIFA workers and nest soils were determined to have markedly different bacterial communities, with RIFA worker microbiomes being characterized by high abundances of a Bartonella-like endosymbiont and Entomoplasmataceae. Cloning and sequencing of the 16S rRNA gene revealed the Bartonella sp. to be a novel bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1:
Fig. 2:
Fig. 3:
Fig. 4:
Fig. 5:
Fig. 6:

Similar content being viewed by others

Data Availability

Newly determined sequence data were deposited in the NCBI Sequence Read Archive (SRA) under accession number PRJNA690596. 

References

  1. Taylor M, Mediannikov O, Raoult D, Greub G (2012) Endosymbiotic bacteria associated with nematodes, ticks and amoebae. FEMS Immunol. Med. Microbiol. 64:21–31

    Article  CAS  Google Scholar 

  2. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC (2001) The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 32:305–332

    Article  Google Scholar 

  3. Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB (2012) Animal behavior and the microbiome. Science 338:198–199

    Article  CAS  Google Scholar 

  4. Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK (2011) Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends Microbiol. 19:349–359

    Article  CAS  Google Scholar 

  5. Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36:533–543

    Article  Google Scholar 

  6. Enagbonma BJ, Ajilogba CF, Babalola OO (2020) Metagenomic profiling of bacterial diversity and community structure in termite mounds and surrounding soils. Arch. Microbiol. 202:2697–2709

    Article  CAS  Google Scholar 

  7. Fall S, Hamelin J, Ndiaye F, Assigbetse K, Aragno M, Chotte JL, Brauman A (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl. Environ. Microbiol. 73:5199–5208

    Article  CAS  Google Scholar 

  8. Makonde HM, Mwirichia R, Osiemo Z, Boga HI, Klenk H-P (2015) 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils. SpringerPlus 4:471

    Article  Google Scholar 

  9. Guimaraes HIP, Santana RH, Silveira R, Pinto OHB, Quirino BF, Barreto CC, Bustamante MMC, Krüger RH (2020) Seasonal variations in soil microbiota profile of termite (Syntermes wheeleri) mounds in the Brazilian tropical savanna. Microorganisms 8:1482

  10. Lucas J, Bill B, Stevenson B, Kaspari M (2017) The microbiome of the ant-built home: the microbial communities of a tropical arboreal ant and its nest. Ecosphere 8:e01639

    Article  Google Scholar 

  11. Boots B, Keith AM, Niechoj R, Breen J, Schmidt O, Clipson N (2012) Unique soil microbial assemblages associated with grassland ant species with different nesting and foraging strategies. Pedobiologia 55:33–40

    Article  Google Scholar 

  12. Ross KG, Shoemaker DD (2008) Estimation of the number of founders of an invasive pest insect population: the fire ant Solenopsis invicta in the USA. Proc. R. Soc. Lond. B Biol. Sci. 275:2231–2240

    Google Scholar 

  13. Porter SD, Savignano DA (1990) Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 71:2095–2106. https://doi.org/10.2307/1938623

    Article  Google Scholar 

  14. Porter SD, Williams DF, Patterson RS, Fowler HG (1997) Intercontinental differences in the abundance of Solenopsis fire ants (Hymenoptera: Formicidae): escape from natural enemies? Environ. Entomol. 26:373–384. https://doi.org/10.1093/ee/26.2.373

    Article  Google Scholar 

  15. eXtension (2019) Imported fire ants. http://articles.extension.org/fire_ants. Accessed 15 May 2019.

  16. Byron DW, Hays SB (1986) Occurrence and significance of multiple mound utilization by colonies of the red imported fire ant (Hymenoptera: Formicidae). J. Econ. Entomol. 79:637–640. https://doi.org/10.1093/jee/79.3.637

    Article  Google Scholar 

  17. Wang J, Wurm Y, Nipitwattanaphon M, Riba-Grognuz O, Huang Y-C, Shoemaker D, Keller L (2013) A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493:664–668. https://doi.org/10.1038/nature11832

    Article  CAS  PubMed  Google Scholar 

  18. Krieger MJ, Ross KG (2002) Identification of a major gene regulating complex social behavior. Science 295:328–332

    Article  CAS  Google Scholar 

  19. Cox GW, Mills JN, Ellis BA (1992) Fire ants (Hymenoptera: Formicidae) as major agents of landscape development. Environ. Entomol. 21:281–286. https://doi.org/10.1093/ee/21.2.281

    Article  Google Scholar 

  20. Vander Meer RK, Morel L (1995) Ant queens deposit pheromones and antimicrobial agents on eggs. Naturwissenschaften 82:93–95. https://doi.org/10.1007/bf01140150

    Article  CAS  Google Scholar 

  21. Obin MS, Vander Meer RK (1985) Gaster flagging by fire ants (Solenopsis spp.): Functional significance of venom dispersal behavior. J. Chem. Ecol. 11:1757–1768. https://doi.org/10.1007/bf01012125

    Article  CAS  PubMed  Google Scholar 

  22. Cabrera A, Williams D, Hernández JV, Caetano FH, Jaffe K (2004) Metapleural- and postpharyngeal-gland secretions from workers of the ants Solenopsis invicta and S. geminata. Chem. Biodivers. 1:303–311. https://doi.org/10.1002/cbdv.200490027

    Article  CAS  PubMed  Google Scholar 

  23. Ishak HD, Plowes R, Sen R, Kellner K, Meyer E, Estrada DA, Dowd SE, Mueller UG (2011) Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb. Ecol. 61:821–831. https://doi.org/10.1007/s00248-010-9793-4

    Article  PubMed  Google Scholar 

  24. Powell CM, Hanson JD, Bextine BR (2014) Bacterial community survey of Solenopsis invicta Buren (red imported fire ant) colonies in the presence and absence of Solenopsis invicta virus (SINV). Curr. Microbiol. 69:580–585. https://doi.org/10.1007/s00284-014-0626-4

    Article  CAS  PubMed  Google Scholar 

  25. Woolfolk S, Stokes CE, Watson C, Brown R, Baird R (2016) Bacteria associated with red imported fire ants (Solenopsis invicta) from mounds in Mississippi. Microb. Ecol. 15:83–101. https://doi.org/10.1656/058.015.0107

    Article  Google Scholar 

  26. Martiny AC (2020) The ‘1% culturability paradigm’ needs to be carefully defined. ISME. J. 14:10–11

  27. Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol. Mol. Biol. Rev. 68:686–691

  28. Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 7:e30087

  29. Smith MP, Ponnusamy L, Jiang J, Ayyash LA, Richards AL, Apperson CS (2010) Bacterial pathogens in ixodid ticks from a Piedmont County in North Carolina: prevalence of rickettsial organisms. Vector-Borne Zoonotic Dis 10:939–952. https://doi.org/10.1089/vbz.2009.0178

    Article  PubMed  Google Scholar 

  30. Valles SM, Porter SD (2003) Identification of polygyne and monogyne fire ant colonies (Solenopsis invicta ) by multiplex PCR of Gp-9 alleles. Insect. Soc. 50:199–200. https://doi.org/10.1007/s00040-003-0662-8

    Article  Google Scholar 

  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J. Mol. Biol. 215:403–410. https://doi.org/10.1016/s0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  32. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700. https://doi.org/10.1128/aem.59.3.695-700.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ponnusamy L, Xu N, Stav G, Wesson DM, Schal C, Apperson CS (2008) Diversity of bacterial communities in container habitats of mosquitoes. Microb. Ecol. 56:593–603. https://doi.org/10.1007/s00248-008-9379-6

    Article  PubMed  PubMed Central  Google Scholar 

  34. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME. J. 6:1621–1624

    Article  CAS  Google Scholar 

  35. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336

    Article  CAS  Google Scholar 

  36. Estaki M, Jiang L, Bokulich NA, McDonald D, González A, Kosciolek T, Martino C, Zhu Q, Birmingham A, Vázquez-Baeza Y, Dillon MR, Bolyen E, Caporaso JG, Knight R (2020) QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr. Protoc. Bioinformatics 70:e100. https://doi.org/10.1002/cpbi.100

    Article  PubMed  Google Scholar 

  37. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581–583

    Article  CAS  Google Scholar 

  38. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17:10. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  39. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME. J. 6:610–618

    Article  CAS  Google Scholar 

  40. Shannon CE (2001) A mathematical theory of communication. SIGMOBILE Mob Comput Commun Rev 5:3–55

    Article  Google Scholar 

  41. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61:1–10

    Article  Google Scholar 

  42. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71:8228–8235

    Article  CAS  Google Scholar 

  43. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611. https://doi.org/10.1093/biomet/52.3-4.591

    Article  Google Scholar 

  44. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1046/j.1442-9993.2001.01070.x

    Article  Google Scholar 

  45. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60–R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, Chichester, pp 115–175

  47. Travanty NV, Ponnusamy L, Kakumanu ML, Nicholson WL, Apperson CS (2019) Diversity and structure of the bacterial microbiome of the American dog tick, Dermacentor variabilis, is dominated by the endosymbiont Francisella. Symbiosis 79:239–250. https://doi.org/10.1007/s13199-019-00642-2

    Article  CAS  Google Scholar 

  48. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874

    Article  CAS  Google Scholar 

  50. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  51. Konrad M, Pull CD, Metzler S, Seif K, Naderlinger E, Grasse AV, Cremer S (2018) Ants avoid superinfections by performing risk-adjusted sanitary care. Proc. Natl. Acad. Sci. 115:2782–2787

    Article  CAS  Google Scholar 

  52. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME. J. 4:1340–1351. https://doi.org/10.1038/ismej.2010.58

    Article  PubMed  Google Scholar 

  53. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75:5111–5120. https://doi.org/10.1128/AEM.00335-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chau JF, Bagtzoglou AC, Willig MR (2011) The effect of soil texture on richness and diversity of bacterial communities. Environ. Forensic 12:333–341. https://doi.org/10.1080/15275922.2011.622348

    Article  CAS  Google Scholar 

  55. Treonis AM, Austin EE, Buyer JS, Maul JE, Spicer L, Zasada IA (2010) Effects of organic amendment and tillage on soil microorganisms and microfauna. Appl. Soil Ecol. 46:103–110. https://doi.org/10.1016/j.apsoil.2010.06.017

    Article  Google Scholar 

  56. Lee L-H, Chan K-G, Stach J, Wellington EMH, Goh B-H (2018) Editorial: the search for biological active agent(s) from Actinobacteria. Front. Microbiol. 9:824–824. https://doi.org/10.3389/fmicb.2018.00824

    Article  PubMed  PubMed Central  Google Scholar 

  57. Matarrita-Carranza B, Moreira-Soto RD, Murillo-Cruz C, Mora M, Currie CR, Pinto-Tomas AA (2017) Evidence for widespread associations between Neotropical Hymenopteran insects and Actinobacteria. Front. Microbiol. 8:2016–2016. https://doi.org/10.3389/fmicb.2017.02016

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang Z, Yu Z, Zhao J, Zhuang X, Cao P, Guo X, Liu C, Xiang W (2020) Community composition, antifungal activity and chemical analyses of ant-derived Actinobacteria. Front. Microbiol. 11:201–201. https://doi.org/10.3389/fmicb.2020.00201

    Article  PubMed  PubMed Central  Google Scholar 

  59. Song J, Choo YJ, Cho JC (2008) Perlucidibaca piscinae gen. nov., sp. nov., a freshwater bacterium belonging to the family Moraxellaceae. Int. J. Syst. Evol. Microbiol. 58:97–102. https://doi.org/10.1099/ijs.0.65039-0

    Article  CAS  PubMed  Google Scholar 

  60. Yang C, Liu N, Zhang Y (2019) Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma 337:444–452. https://doi.org/10.1016/j.geoderma.2018.10.002

    Article  CAS  Google Scholar 

  61. Huang J, Sheng X, He L, Huang Z, Wang Q, Zhang Z (2013) Characterization of depth-related changes in bacterial community compositions and functions of a paddy soil profile. FEMS Microbiol. Lett. 347:33–42. https://doi.org/10.1111/1574-6968.12218

    Article  CAS  PubMed  Google Scholar 

  62. Bor B, Bedree JK, Shi W, McLean JS, He X (2019) Saccharibacteria (TM7) in the human oral microbiome. J. Dent. Res. 98:500–509. https://doi.org/10.1177/0022034519831671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vasilyeva LV, Omelchenko MV, Berestovskaya YY, Lysenko AM, Abraham W-R, Dedysh SN, Zavarzin GA (2006) Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil. Int. J. Syst. Evol. Microbiol. 56:2083–2088

    Article  CAS  Google Scholar 

  64. Ashigar MA, Ab Majid AH (2020) 16S rRNA metagenomic data of microbial diversity of Pheidole decarinata Santschi (Hymenoptera: Formicidae) workers. Data. Brief. 31:106037–106037. https://doi.org/10.1016/j.dib.2020.106037

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chua K-O, Song S-L, Yong H-S, See-Too W-S, Yin W-F, Chan K-G (2018) Microbial community composition reveals spatial variation and distinctive core microbiome of the weaver ant Oecophylla smaragdina in Malaysia. Sci. Rep. 8:10777–10777. https://doi.org/10.1038/s41598-018-29159-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Johansson H, Dhaygude K, Lindström S, Helanterä H, Sundström L, Trontti K (2013) A metatranscriptomic approach to the identification of microbiota associated with the ant Formica exsecta. PLoS One 8:e79777–e79777. https://doi.org/10.1371/journal.pone.0079777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Martinez AFC, de Almeida LG, Moraes LAB, Cônsoli FL (2019) Microbial diversity and chemical multiplicity of culturable, taxonomically similar bacterial symbionts of the leaf-cutting ant Acromyrmex coronatus. Microb. Ecol. 77:1067–1081. https://doi.org/10.1007/s00248-019-01341-7

    Article  CAS  PubMed  Google Scholar 

  68. Suen G, Scott JJ, Aylward FO, Adams SM, Tringe SG, Pinto-Tomás AA, Foster CE, Pauly M, Weimer PJ, Barry KW, Goodwin LA, Bouffard P, Li L, Osterberger J, Harkins TT, Slater SC, Donohue TJ, Currie CR (2010) An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet. 6:e1001129–e1001129. https://doi.org/10.1371/journal.pgen.1001129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Delgado-Baquerizo M, Eldridge DJ, Hamonts K, Singh BK (2019) Ant colonies promote the diversity of soil microbial communities. ISME. J. 13:1114–1118

    Article  Google Scholar 

  70. Liu CH, Chen X, Liu TT, Lian B, Gu Y, Caer V, Xue YR, Wang BT (2007) Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components. Appl. Microbiol. Biotechnol. 76:459–466. https://doi.org/10.1007/s00253-007-1010-0

    Article  CAS  PubMed  Google Scholar 

  71. Nadhe SB, Singh R, Wadhwani SA, Chopade BA (2019) Acinetobacter sp. mediated synthesis of AgNPs, its optimization, characterization and synergistic antifungal activity against C. albicans. J. Appl. Microbiol. 127:445–458. https://doi.org/10.1111/jam.14305

    Article  CAS  PubMed  Google Scholar 

  72. Bennett GM, Moran NA (2013) Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol Evol 5:1675–1688. https://doi.org/10.1093/gbe/evt118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Herlemann DPR, Geissinger O, Ikeda-Ohtsubo W, Kunin V, Sun H, Lapidus A, Hugenholtz P, Brune A (2009) Genomic analysis of “Elusimicrobium minutum,” the first cultivated representative of the phylum “Elusimicrobia” (formerly termite group 1). Appl. Environ. Microbiol. 75:2841–2849. https://doi.org/10.1128/AEM.02698-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Waite DW, Dsouza M, Biswas K, Ward DF, Deines P, Taylor MW (2015) Microbial community structure in the gut of the New Zealand insect Auckland tree weta (Hemideina thoracica). Arch. Microbiol. 197:603–612. https://doi.org/10.1007/s00203-015-1094-3

    Article  CAS  PubMed  Google Scholar 

  75. Herlemann DPR, Geissinger O, Brune A (2007) The termite group I phylum is highly diverse and widespread in the environment. Appl. Environ. Microbiol. 73:6682–6685. https://doi.org/10.1128/AEM.00712-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 7:744–744. https://doi.org/10.3389/fmicb.2016.00744

    Article  PubMed  PubMed Central  Google Scholar 

  77. Larson HK, Goffredi SK, Parra EL, Vargas O, Pinto-Tomas AA, McGlynn TP (2014) Distribution and dietary regulation of an associated facultative Rhizobiales-related bacterium in the omnivorous giant tropical ant, Paraponera clavata. Naturwissenschaften 101:397–406. https://doi.org/10.1007/s00114-014-1168-0

    Article  CAS  PubMed  Google Scholar 

  78. Stoll S, Gadau J, Gross ROY, Feldhaar H (2007) Bacterial microbiota associated with ants of the genus Tetraponera. Biol. J. Linn. Soc. 90:399–412. https://doi.org/10.1111/j.1095-8312.2006.00730.x

    Article  Google Scholar 

  79. Oliveira TB, Ferro M, Bacci M, Souza DJ, Fontana R, Delabie JHC, Silva A (2016) Bacterial communities in the midgut of ponerine ants (Hymenoptera: Formicidae: Ponerinae). Sociobiol 63:637. https://doi.org/10.13102/sociobiology.v63i1.882

    Article  Google Scholar 

  80. Funaro CF, Kronauer DJC, Moreau CS, Goldman-Huertas B, Pierce NE, Russell JA (2011) Army ants harbor a host-specific clade of Entomoplasmatales bacteria. Appl. Environ. Microbiol. 77:346–350. https://doi.org/10.1128/AEM.01896-10

    Article  CAS  PubMed  Google Scholar 

  81. Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc. Natl. Acad. Sci. U. S. A. 106:21236–21241

    Article  CAS  Google Scholar 

  82. Lahav T, Zchori-Fein E, Naor V, Freilich S, Iasur-Kruh L (2016) Draft genome sequence of a Dyella-like bacterium from the planthopper Hyalesthes obsoletus. Genome Announc 4:e00686–e00616. https://doi.org/10.1128/genomeA.00686-16

    Article  PubMed  PubMed Central  Google Scholar 

  83. Iasur-Kruh L, Naor V, Zahavi T, Ballinger MJ, Sharon R, Robinson WE, Perlman SJ, Zchori-Fein E (2017) Bacterial associates of Hyalesthes obsoletus (Hemiptera: Cixiidae), the insect vector of bois noir disease, with a focus on cultivable bacteria. Res. Microbiol. 168:94–101. https://doi.org/10.1016/j.resmic.2016.08.005

    Article  PubMed  Google Scholar 

  84. Chiel E, Inbar M, Mozes-Daube N, White JA, Hunter MS, Zchori-Fein E (2009) Assessments of fitness effects by the facultative symbiont Rickettsia in the sweetpotato whitefly (Hemiptera: Aleyrodidae). Ann Entomol So Am 102:413–418. https://doi.org/10.1603/008.102.0309

    Article  Google Scholar 

  85. Noda H, Watanabe K, Kawai S, Yukuhiro F, Miyoshi T, Tomizawa M, Koizumi Y, Nikoh N, Fukatsu T (2012) Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl. Entomol. Zool. 47:217–225. https://doi.org/10.1007/s13355-012-0110-1

    Article  CAS  Google Scholar 

  86. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256

    Article  CAS  Google Scholar 

  87. Zucchi TD, Guidolin AS, Cônsoli FL (2011) Isolation and characterization of actinobacteria ectosymbionts from Acromyrmex subterraneus brunneus (Hymenoptera, Formicidae). Microbiol. Res. 166:68–76. https://doi.org/10.1016/j.micres.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  88. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol. 17:529–535. https://doi.org/10.1016/j.tim.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  89. Lanan MC, Rodrigues PAP, Agellon A, Jansma P, Wheeler DE (2016) A bacterial filter protects and structures the gut microbiome of an insect. ISME. J. 10:1866–1876

    Article  CAS  Google Scholar 

  90. Stach JEM, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ. Microbiol. 5:828–841. https://doi.org/10.1046/j.1462-2920.2003.00483.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the North Carolina Agricultural Foundation, Inc. We are grateful to Dr. Coby Schal for his comments on our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N.V.T. collected samples, extracted DNA from samples, and carried out PCR, DGGE, and 16S Illumina library preparations. N.V.T. and L.P. analyzed the data. N.V.T. wrote original draft of the manuscript and N.V.T., E.L.V., C.S.A., and L.P. reviewed and edited final version of the manuscript.

Corresponding author

Correspondence to Loganathan Ponnusamy.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors approve the final draft of the publication and consent to submission.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travanty, N.V., Vargo, E.L., Apperson, C.S. et al. Colonization by the Red Imported Fire Ant, Solenopsis invicta, Modifies Soil Bacterial Communities. Microb Ecol 84, 240–256 (2022). https://doi.org/10.1007/s00248-021-01826-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01826-4

Keywords

Navigation