Sheffield Children’s Hospital accepts referrals from the South Yorkshire region in the United Kingdom and provides specialist paediatric care to a population of approximately 2 million. MRI is often performed at the patient’s local hospital and the images in this study therefore represent a pragmatic “real-life” data set, sourced from different regional hospitals using different equipment and protocols. For clinical purposes, we routinely provide a descriptive report for MRI studies of the craniocervical junction and noted with interest the introduction of an achondroplasia foramen magnum score [13]. However, the publication did not indicate interobserver reliability of the score and neither (as far as we are aware) has any other group assessed this important parameter. Based on one of the largest data sets published in relation to foramen magnum stenosis in achondroplasia, we found that among four radiologists, the interobserver correlation coefficient of the 4-point score was 0.72, signifying good agreement [16].
The ICC of the achondroplasia foramen magnum score in this current study (0.72) is comparable to that of the cervical stenosis score developed for use in adults (ICC = 0.77) [18] and to scoring systems in widespread use, such as the Liver Reporting & Data System (LI-RADS) MRI score for the assessment of hepatocellular carcinoma (ICC = 0.73) [19] and Prostate Imaging Reporting & Data System (PI-RADS) for the assessment of prostate cancer (ICC = 0.71) [20]. It is hoped that standardizing the imaging protocol throughout the referral network, increased experience with the score, and widespread use of 3-T scanners will improve the ICC of the achondroplasia foramen magnum score.
One of the causes of interobserver disagreement was large cerebrospinal fluid flow voids obscuring bone detail. Cerebrospinal fluid flow voids occur due to protons moving out of plane between spatially selective radiofrequency pulses and appear as a lack of signal on the MRI. Cerebrospinal fluid flow voids occur normally at the craniocervical junction but can appear particularly prominent if the craniocervical junction is narrowed, causing an increase in the velocity of the cerebrospinal fluid. The flow void may become inseparable from the adjacent bony contour of the foramen magnum (Fig. 4). Gradient-echo based sequences use a shorter delay between the excitation and the refocusing pulse and are hence less susceptible to flow voids.
The achondroplasia foramen magnum score presumes a logical sequential progression of features consistent with increasing spinal cord compression. Effacement of cerebrospinal fluid signal is followed by cord indentation, which then results in myelopathic cord signal change. However, our data set does not fully support this logical sequence, containing three studies where cerebrospinal fluid signal is maintained despite indentation of the cord (achondroplasia foramen magnum score 3a example image, Fig. 1). Similarly, there were two studies showing presumed myelopathic T2 change despite maintained cerebrospinal fluid signal (Fig. 2). The use of the extended achondroplasia foramen magnum score would accurately capture these cases. Of note, extending the score, while increasing the descriptive assessment, did not introduce any additional interobserver variance, with the ICC remaining at 0.72.
A previous study [21] in an older achondroplasia population (40.7 ± 15.3 years) found that 7 of 18 (39%) patients had areas of high T2 signal in their spinal cervical cord (“cervical high-intensity intramedullary lesions”) and that in 6 of the 18 cases (33%) indentation of the cervical cord without external compression was present. These findings were not associated with clinical symptoms. The authors were unable to elicit positional (flexion/extension) compression in adulthood but suggest the findings may be due to earlier, now resolved, positional compression. We did not identify any cases of infants with increased T2 signal in the cord and maintained surrounding cerebrospinal fluid space but did observe this pattern in two children ages 7 years and 12 years (Figs. 2 and 5). However, cord indentation with maintained cerebrospinal fluid signal was visible earlier in patients ages 5 months, 8 months and 3 years. A previous case series [8] has shown that positional compression is common with 38% of studied infants exhibiting stenosis evident on dynamic flexion/extension imaging. It is possible that indentation followed by high T2 signal with maintained cerebrospinal fluid signal is the natural progression of the imaging appearances of positional compression. There is no consensus on the management of positional cord compression [10] and the risk of adverse respiratory events has not been established. Distinguishing patients with high cord signal (Grade 4) or indentation (Grade 3) who do have cerebrospinal fluid flow around the cord from those who do not is one of the benefits of the extended achondroplasia foramen magnum score.
Phase-contrast cerebrospinal fluid flow studies were only available for seven patients. Of note is the fact that even with imaging showing indentation of the cord (in four of these seven studies), flow remained present at the craniocervical junction. In 1987, work on CT imaging of the foramen magnum identified hypertrophy of the posterior occiput as a key contributor to cervical spinal cord compression [22]. The imaging findings in our data set confirms that the spinal cord can be compressed centrally by occipital hypertrophy, while cerebrospinal fluid flow remains present laterally in the foramen magnum (Fig. 6).
Ideally, MRI should be obtained when the child is 6–12 months old, when the size of the foramen magnum has been shown to be at its narrowest, due to a combination of premature posterior synchondrosis fusion and impaired growth [22]. In one patient in our cohort, imaging was initially performed at 1 month, then repeated at 9 months of age. The latter demonstrated interval progression of cord compression in line with the achondroplasia foramen magnum score progressing from 3 to 4 (Fig. 7). At our institution, we do not routinely arrange for follow-up MRI after 12 months of age, unless there is a clinical indication.
The consensus guidelines state that cord change (Grade 4) is an indication for surgical decompression of the craniocervical junction [10]. This is consistent with the practice at our centre, where all patients with MR-demonstrated compression and myelopathic cord signal change were decompressed – five of the patients had presented with episodes of desaturation, one patient developed new clonus and one patient underwent surgery electively based on MR findings. Cases with indentation of the spinal cord (Grade 3) were assessed clinically, with one of the four patients proceeding to decompression; clinically, the patient was found to have decreased tone, increased reflexes and reported episodes of desaturation. Overall, the intervention rate in our centre was 14.8%, which is near the median of published figures ranging from 4.5% to 42.6% [7, 11, 12].
Multiple case series [11, 13, 23] have previously argued for universal assessment of the craniocervical junction in infants with achondroplasia using MR noting that polysomnography is not sufficiently sensitive. In our cohort, two infants underwent preoperative polysomnography. One infant (Patient 3, Table 2) underwent polysomnography preoperatively after inadequate imaging was obtained using the feed-and-wrap method. The initial sleep study was mildly abnormal (mixed obstructive and central events, AHI = 10.4); a repeat study was performed, which was normal (AHI = 0.6). The patient presented 9 days later, at the age of 7 months, with respiratory arrest; severe stenosis in keeping with Grade 4 (Fig. 7) was identified on MRI. The patient then underwent surgical decompression of the craniocervical junction. Our limited evidence agrees with previous studies that polysomnography cannot be relied upon to detect cord compression in infants with achondroplasia.
The limitations of this study are its retrospective nature, limited patient numbers and sourcing of data from a single referral network. Future work is required to correlate imaging findings to clinical outcomes, perhaps using a multicenter case–control study design, stratified by center, as a randomised controlled trial would not be ethical.