Skip to main content

Advertisement

Log in

New insights in craniovertebral junction MR changes leading to stenosis in children with achondroplasia

  • Original Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

To characterize natural history and early changes of craniovertebral junction stenosis in achondroplasia correlating with clinical and radiological outcome.

Methods

Retrospective measures on craniovertebral junction were performed blindly, on sagittal T2-weighted images, in 21 patients with achondroplasia referred from 2008 to 2020. Clinical and polysomnography data were retrospectively collected. Each patient was paired for age and gender with four controls. Wilcoxon means comparison or Student’s t-tests were applied.

Results

Twenty-one patients (11 females, from 0.1 to 39 years of age) were analyzed and paired with 84 controls. A craniovertebral junction stenosis was found in 11/21 patients (52.4%), all before the age of 2 years. Despite a significant reduction of the foramen magnum diameter (mean ± SD: patients 13.6 ± 6.2 mm, controls 28.5 ± 4.7 mm, p < .001), craniovertebral junction stenosis resulted from the narrowing of C2 dens-opisthion antero-posterior diameter (8.7 ± 3.9 mm vs 24.6 ± 5.1 mm, p < .001). Other significant changes were opisthion anterior placement (−0.4 ± 2.8 mm vs 9.4 ± 2.3 mm, p < .001), posterior tilt of C2 (46.2 ± 13.7° vs 31.6 ± 7.9°, p < .001) and of C1 (15.1 ± 4.3° vs 11.9 ± 5.0°, p = 0.01), and dens thickening (9.4 ± 2.2 mm vs 8.5 ± 2.1 mm, p = 0.03), allowing to define three distinguishable early craniovertebral junction patterns in achondroplasia. All children with C2-opisthion antero-posterior diameter of more than 6 mm had a better clinical and radiological outcome.

Conclusion

Craniovertebral junction in achondroplasia results from narrowing between C2 dens and opisthion related to anterior placement of opisthion, thickening of C2 dens, and posterior tilt of C1-C2. A threshold of 6 mm for dens-opisthion sagittal diameter seems to correlate with clinical and radiological outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACH:

Achondroplasia

cAHI:

Central apnea–hypopnea index

CVJ:

Craniovertebral junction

FM:

Foramen magnum

References

  1. Rousseau F, Bonaventure J, Legeai-Mallet L et al (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–254. https://doi.org/10.1038/371252a0

    Article  CAS  PubMed  Google Scholar 

  2. Shiang R, Thompson LM, Zhu YZ et al (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–342. https://doi.org/10.1016/0092-8674(94)90302-6

    Article  CAS  PubMed  Google Scholar 

  3. Webster MK, Donoghue DJ (1996) Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J 15:520–527

    Article  CAS  Google Scholar 

  4. Jolly RJ, Moore WJ (1975) Skull growth in achondroplasic (cn) mice; a craniometric study. J Embryol Exp Morphol 33:1013–1022

    CAS  PubMed  Google Scholar 

  5. Matsushita T, Wilcox WR, Chan YY et al (2009) FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum Mol Genet 18:227–240. https://doi.org/10.1093/hmg/ddn339

    Article  CAS  PubMed  Google Scholar 

  6. Di Rocco F, Biosse Duplan M, Heuzé Y et al (2014) FGFR3 mutation causes abnormal membranous ossification in achondroplasia. Hum Mol Genet 23:2914–2925. https://doi.org/10.1093/hmg/ddu004

    Article  CAS  PubMed  Google Scholar 

  7. Bellus GA, Hefferon TW, Ortiz de Luna RI et al (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet 56:368–373

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lutter LD, Langer LO (1977) Neurological symptoms in achondroplastic dwarfs–surgical treatment. J Bone Joint Surg Am 59:87–92

    Article  CAS  Google Scholar 

  9. Pauli RM, Scott CI, Wassman ER et al (1984) Apnea and sudden unexpected death in infants with achondroplasia. J Pediatr 104:342–348. https://doi.org/10.1016/s0022-3476(84)81092-6

    Article  CAS  PubMed  Google Scholar 

  10. Hecht JT, Francomano CA, Horton WA, Annegers JF (1987) Mortality in achondroplasia. Am J Hum Genet 41:454–464

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bland JD, Emery JL (1982) Unexpected death of children with achondroplasia after the perinatal period. Dev Med Child Neurol 24:489–492. https://doi.org/10.1111/j.1469-8749.1982.tb13654.x

    Article  CAS  PubMed  Google Scholar 

  12. Yang SS, Corbett DP, Brough AJ et al (1977) Upper cervical myelopathy in achondroplasia. Am J Clin Pathol 68:68–72. https://doi.org/10.1093/ajcp/68.1.68

    Article  CAS  PubMed  Google Scholar 

  13. Hecht JT, Nelson FW, Butler IJ et al (1985) Computerized tomography of the foramen magnum: achondroplastic values compared to normal standards. Am J Med Genet 20:355–360. https://doi.org/10.1002/ajmg.1320200219

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Rosenbaum AE, Reid CS et al (1987) Pediatric patients with achondroplasia: CT evaluation of the craniocervical junction. Radiology 164:515–519. https://doi.org/10.1148/radiology.164.2.3602395

    Article  CAS  PubMed  Google Scholar 

  15. Hecht JT, Horton WA, Reid CS et al (1989) Growth of the foramen magnum in achondroplasia. Am J Med Genet 32:528–535. https://doi.org/10.1002/ajmg.1320320421

    Article  CAS  PubMed  Google Scholar 

  16. Savarirayan R, Irving M, Maixner W et al (2021) Rationale, design, and methods of a randomized, controlled, open-label clinical trial with open-label extension to investigate the safety of vosoritide in infants, and young children with achondroplasia at risk of requiring cervicomedullary decompression surgery. Sci Prog 104:368504211003782. https://doi.org/10.1177/00368504211003782

    Article  CAS  PubMed  Google Scholar 

  17. Hoover-Fong J, Scott CI, Jones MC, COMMITTEE ON GENETICS (2020) Health supervision for people with achondroplasia. Pediatrics 145:e20201010. https://doi.org/10.1542/peds.2020-1010

    Article  PubMed  Google Scholar 

  18. White KK, Bompadre V, Goldberg MJ et al (2016) Best practices in the evaluation and treatment of foramen magnum stenosis in achondroplasia during infancy. Am J Med Genet A 170A:42–51. https://doi.org/10.1002/ajmg.a.37394

    Article  PubMed  Google Scholar 

  19. Kubota T, Adachi M, Kitaoka T et al (2020) Clinical practice guidelines for achondroplasia. Clin Pediatr Endocrinol 29:25–42. https://doi.org/10.1297/cpe.29.25

    Article  PubMed  PubMed Central  Google Scholar 

  20. Thomas IT, Frias JL, Williams JL, Friedman WA (1988) Magnetic resonance imaging in the assessment of medullary compression in achondroplasia. Am J Dis Child 142:989–992. https://doi.org/10.1001/archpedi.1988.02150090087031

    Article  CAS  PubMed  Google Scholar 

  21. Kao SC, Waziri MH, Smith WL et al (1989) MR imaging of the craniovertebral junction, cranium, and brain in children with achondroplasia. AJR Am J Roentgenol 153:565–569. https://doi.org/10.2214/ajr.153.3.565

    Article  CAS  PubMed  Google Scholar 

  22. Brühl K, Stoeter P, Wietek B et al (2001) Cerebral spinal fluid flow, venous drainage and spinal cord compression in achondroplastic children: impact of magnetic resonance findings for decompressive surgery at the cranio-cervical junction. Eur J Pediatr 160:10–20. https://doi.org/10.1007/pl00008410

    Article  PubMed  Google Scholar 

  23. Marin-Padilla M, Marin-Padilla TM (1977) Developmental abnormalities of the occipital bone in human chondrodystrophies (achondroplasia and thanatophoric dwarfism). Birth Defects Orig Artic Ser 13:7–23

    CAS  PubMed  Google Scholar 

  24. DiMario FJ, Ramsby GR, Burleson JA, Greensheilds IR (1995) Brain morphometric analysis in achondroplasia. Neurology 45:519–524. https://doi.org/10.1212/wnl.45.3.519

    Article  PubMed  Google Scholar 

  25. Bosemani T, Orman G, Hergan B et al (2015) Achondroplasia in children: correlation of ventriculomegaly, size of foramen magnum and jugular foramina, and emissary vein enlargement. Childs Nerv Syst 31:129–133. https://doi.org/10.1007/s00381-014-2559-4

    Article  PubMed  Google Scholar 

  26. Calandrelli R, Panfili M, D’Apolito G et al (2017) Quantitative approach to the posterior cranial fossa and craniocervical junction in asymptomatic children with achondroplasia. Neuroradiology 59:1031–1041. https://doi.org/10.1007/s00234-017-1887-y

    Article  PubMed  Google Scholar 

  27. Reina V, Baujat G, Fauroux B et al (2014) Craniovertebral junction anomalies in achondroplastic children. Adv Tech Stand Neurosurg 40:295–312. https://doi.org/10.1007/978-3-319-01065-6_10

    Article  PubMed  Google Scholar 

  28. Klimo P, Rao G, Brockmeyer D (2007) Congenital anomalies of the cervical spine. Neurosurg Clin N Am 18:463–478. https://doi.org/10.1016/j.nec.2007.04.005

    Article  PubMed  Google Scholar 

  29. Brouwer PA, Lubout CM, van Dijk JM, Vleggeert-Lankamp CL (2012) Cervical high-intensity intramedullary lesions in achondroplasia: aetiology, prevalence and clinical relevance. Eur Radiol 22:2264–2272. https://doi.org/10.1007/s00330-012-2488-0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cheung MS, Irving M, Cocca A et al (2021) Achondroplasia foramen magnum score: screening infants for stenosis. Arch Dis Child 106:180–184. https://doi.org/10.1136/archdischild-2020-319625

    Article  PubMed  Google Scholar 

  31. Smid CJ, Legare JM, Modaff P, Pauli RM (2020) Apparently benign craniocervical signs in achondroplasia: “neurologic leftovers” identified through a retrospective dataset. Orphanet J Rare Dis 15:301. https://doi.org/10.1186/s13023-020-01584-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the patients and their family for their contribution and their trust and I. Moulay-Lakhdar (clinical researcher, Department of Genetics, Hospices Civils de Lyon) for the management of consents.

Author information

Authors and Affiliations

Authors

Contributions

Design of the work: Sara Cabet, Massimiliano Rossi, and Federico Di Rocco. Analysis: Sara Cabet, Laurent Guibaud, Massimiliano Rossi, and Federico Di Rocco. Interpretation of data: Sara Cabet, Patricia Franco, Laurent Guibaud, Massimiliano Rossi, and Federico Di Rocco. Revised the work: Sara Cabet, Alexandru Szathmari, Carmine Mottolese, Patricia Franco, Laurent Guibaud, Massimiliano Rossi, and Federico Di Rocco. All authors approved the version to be published and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Federico Di Rocco.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Institutional Review Board approval was obtained: the study protocol was approved by the Ethics Committee (Collège de neurochirurgie n°IRB00011687, 11/10/19).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabet, S., Szathmari, A., Mottolese, C. et al. New insights in craniovertebral junction MR changes leading to stenosis in children with achondroplasia. Childs Nerv Syst 38, 1137–1145 (2022). https://doi.org/10.1007/s00381-022-05514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-022-05514-7

Keywords

Navigation