Skip to main content
Log in

Consistency of Monte Carlo Estimators for Risk-Neutral PDE-Constrained Optimization

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We apply the sample average approximation (SAA) method to risk-neutral optimization problems governed by nonlinear partial differential equations (PDEs) with random inputs. We analyze the consistency of the SAA optimal values and SAA solutions. Our analysis exploits problem structure in PDE-constrained optimization problems, allowing us to construct deterministic, compact subsets of the feasible set that contain the solutions to the risk-neutral problem and eventually those to the SAA problems. The construction is used to study the consistency using results established in the literature on stochastic programming. The assumptions of our framework are verified on three nonlinear optimization problems under uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A point \(x \in X\) is an \(\varepsilon \)-optimal solution to \(\inf _{x \in X}\, f(x)\) if \(f(x) \le \inf _{x \in X}\, f(x) + \varepsilon \).

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ahmad Ali, A., Deckelnick, K., Hinze, M.: Global minima for semilinear optimal control problems. Comput. Optim. Appl. 65(1), 261–288 (2016). https://doi.org/10.1007/s10589-016-9833-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations. SIAM/ASA J. Uncertain. Quantif. 5(1), 1166–1192 (2017). https://doi.org/10.1137/16M106306X

    Article  MathSciNet  MATH  Google Scholar 

  4. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006). https://doi.org/10.1007/3-540-29587-9

  5. Alla, A., Hinze, M., Kolvenbach, P., Lass, O., Ulbrich, S.: A certified model reduction approach for robust parameter optimization with PDE constraints. Adv. Comput. Math. 45(3), 1221–1250 (2019). https://doi.org/10.1007/s10444-018-9653-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Alt, H.W.: Linear Functional Analysis: An Application-Oriented Introduction. Universitext. Springer, London (2016). https://doi.org/10.1007/978-1-4471-7280-2. Translated from the German edition by Robert Nürnberg

  7. Artstein, Z., Wets, R.J.B.: Consistency of minimizers and the SLLN for stochastic programs. J. Convex Anal. 2(1/2), 1–17 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Mod. Birkhäuser Class. Springer, Boston (2009). https://doi.org/10.1007/978-0-8176-4848-0

  9. Banholzer, D., Fliege, J., Werner, R.: On rates of convergence for sample average approximations in the almost sure sense and in mean. Math. Program. 191(1, Ser. B), 307–345 (2022). https://doi.org/10.1007/s10107-019-01400-4

  10. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books Mathematics. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9467-7

  11. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009)

  12. Billingsley, P.: Probability and Measure. Wiley Series in Probability and Statistics. Wiley, Hoboken (2012)

  13. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000). https://doi.org/10.1007/978-1-4612-1394-9

  14. Casas, E., Tröltzsch, F.: Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22(1), 261–279 (2012). https://doi.org/10.1137/110840406

    Article  MathSciNet  MATH  Google Scholar 

  15. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

  16. Chen, P., Ghattas, O.: Taylor approximation for chance constrained optimization problems governed by partial differential equations with high-dimensional random parameters. SIAM/ASA J. Uncertain. Quantif. 9(4), 1381–1410 (2021). https://doi.org/10.1137/20M1381381

    Article  MathSciNet  MATH  Google Scholar 

  17. Conti, S., Held, H., Pach, M., Rumpf, M., Schultz, R.: Risk averse shape optimization. SIAM J. Control Optim. 49(3), 927–947 (2011). https://doi.org/10.1137/090754315

    Article  MathSciNet  MATH  Google Scholar 

  18. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bull. Am. Math. Soc. (N.S.) 39(1), 1–49 (2002). https://doi.org/10.1090/S0273-0979-01-00923-5

    Article  MathSciNet  MATH  Google Scholar 

  19. de los Reyes, J.C., Kunisch, K.: A comparison of algorithms for control constrained optimal control of the Burgers equation. Calcolo 41(4), 203–225 (2004). https://doi.org/10.1007/s10092-004-0092-7

  20. Farshbaf-Shaker, M.H., Henrion, R., Hömberg, D.: Properties of chance constraints in infinite dimensions with an application to PDE constrained optimization. Set-Valued Var. Anal. 26(4), 821–841 (2018). https://doi.org/10.1007/s11228-017-0452-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Farshbaf-Shaker, M.H., Gugat, M., Heitsch, H., Henrion, R.: Optimal Neumann boundary control of a vibrating string with uncertain initial data and probabilistic terminal constraints. SIAM J. Control Optim. 58(4), 2288–2311 (2020). https://doi.org/10.1137/19M1269944

    Article  MathSciNet  MATH  Google Scholar 

  22. Gahururu, D., Hintermüller, M., Stengl, S.M., Surowiec, T.M.: Generalized Nash equilibrium problems with partial differential operators: Theory, algorithms, and risk aversion. In: Hintermüller, M., Herzog, R., Kanzow, C., Ulbrich, M., Ulbrich, S. (eds.) Non-Smooth and Complementarity-Based Distributed Parameter Systems: Simulation and Hierarchical Optimization. Internat. Ser. Numer. Math., vol. 172. Birkhäuser, Cham (2022). https://doi.org/10.1007/978-3-030-79393-7_7

  23. Garreis, S., Ulbrich, M.: Constrained optimization with low-rank tensors and applications to parametric problems with PDEs. SIAM J. Sci. Comput. 39(1), A25–A54 (2017). https://doi.org/10.1137/16M1057607

    Article  MathSciNet  MATH  Google Scholar 

  24. Garreis, S., Ulbrich, M.: A fully adaptive method for the optimal control of semilinear elliptic PDEs under uncertainty using low-rank tensors. Preprint, Technische Universität München, München (2019). http://go.tum.de/204409

  25. Geiersbach, C., Scarinci, T.: Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces. Comput. Optim. Appl. 78(3), 705–740 (2021). https://doi.org/10.1007/s10589-020-00259-y

    Article  MathSciNet  MATH  Google Scholar 

  26. Geletu, A., Hoffmann, A., Schmidt, P., Li, P.: Chance constrained optimization of elliptic PDE systems with a smoothing convex approximation. ESAIM Control Optim. Calc. Var. 26, Paper No. 70, 28 (2020). https://doi.org/10.1051/cocv/2019077

  27. Guigues, V., Juditsky, A., Nemirovski, A.: Non-asymptotic confidence bounds for the optimal value of a stochastic program. Optim. Methods Softw. 32(5), 1033–1058 (2017). https://doi.org/10.1080/10556788.2017.1350177

    Article  MathSciNet  MATH  Google Scholar 

  28. Guth, P.A., Kaarnioja, V., Kuo, F.Y., Schillings, C., Sloan, I.H.: A quasi-Monte Carlo method for optimal control under uncertainty. SIAM/ASA J. Uncertain. Quantif. 9(2), 354–383 (2021). https://doi.org/10.1137/19M1294952

    Article  MathSciNet  MATH  Google Scholar 

  29. Haber, E., Chung, M., Herrmann, F.: An effective method for parameter estimation with PDE constraints with multiple right-hand sides. SIAM J. Optim. 22(3), 739–757 (2012). https://doi.org/10.1137/11081126X

    Article  MathSciNet  MATH  Google Scholar 

  30. Hess, C.: Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator. Ann. Stat. 24(3), 1298–1315 (1996). https://doi.org/10.1214/aos/1032526970

    Article  MathSciNet  MATH  Google Scholar 

  31. Hintermüller, M., Stengl, S.M.: On the convexity of optimal control problems involving non-linear PDEs or VIs and applications to Nash games. Preprint (2020). https://doi.org/10.20347/WIAS.PREPRINT.2759

  32. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Math. Model. Theory Appl., vol. 23. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-8839-1

  33. Hoffhues, M., Römisch, W., Surowiec, T.M.: On quantitative stability in infinite-dimensional optimization under uncertainty. Optim. Lett. 15(8), 2733–2756 (2021). https://doi.org/10.1007/s11590-021-01707-2

    Article  MathSciNet  MATH  Google Scholar 

  34. Huber, P.J.: The behavior of maximum likelihood estimates under nonstandard conditions. In: Le Cam, L.M., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1: Statistics, pp. 221–233. University of California Press, Berkeley (1967)

  35. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces: Martingales and Littlewood-Paley Theory. Ergeb. Math. Grenzgeb. (3) 63. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48520-1

  36. Kahlbacher, M., Volkwein, S.: Estimation of diffusion coefficients in a scalar Ginzburg-Landau equation by using model reduction. In: Kunisch, K., Of, G., Steinbach, O. (eds.) Numerical Mathematics and Advanced Applications, pp. 727–734. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-69777-0_87

  37. Kaniovski, Yu.M., King, A.J., Wets, R.J.B.: Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems. Ann. Oper. Res. 56(1), 189–208 (1995). https://doi.org/10.1007/BF02031707

    Article  MathSciNet  MATH  Google Scholar 

  38. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002). https://doi.org/10.1137/S1052623499363220

    Article  MathSciNet  MATH  Google Scholar 

  39. Kolvenbach, P., Lass, O., Ulbrich, S.: An approach for robust PDE-constrained optimization with application to shape optimization of electrical engines and of dynamic elastic structures under uncertainty. Optim. Eng. 19(3), 697–731 (2018). https://doi.org/10.1007/s11081-018-9388-3

    Article  MathSciNet  MATH  Google Scholar 

  40. Kouri, D.P.: A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients. SIAM/ASA J. Uncertain. Quantif. 2(1), 55–81 (2014). https://doi.org/10.1137/130915960

    Article  MathSciNet  MATH  Google Scholar 

  41. Kouri, D.P.: A measure approximation for distributionally robust PDE-constrained optimization problems. SIAM J. Numer. Anal. 55(6), 3147–3172 (2017). https://doi.org/10.1137/15M1036944

    Article  MathSciNet  MATH  Google Scholar 

  42. Kouri, D.P., Shapiro, A.: Optimization of PDEs with uncertain inputs. In: Antil, H., Kouri, D.P., Lacasse, M.D., Ridzal, D. (eds.) Frontiers in PDE-Constrained Optimization, IMA Vol. Math. Appl. vol. 163, pp. 41–81. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-8636-1_2

  43. Kouri, D.P., Surowiec, T.M.: Risk-averse PDE-constrained optimization using the conditional value-at-risk. SIAM J. Optim. 26(1), 365–396 (2016). https://doi.org/10.1137/140954556

    Article  MathSciNet  MATH  Google Scholar 

  44. Kouri, D.P., Surowiec, T.M.: Existence and optimality conditions for risk-averse PDE-constrained optimization. SIAM/ASA J. Uncertain. Quantif. 6(2), 787–815 (2018). https://doi.org/10.1137/16M1086613

    Article  MathSciNet  MATH  Google Scholar 

  45. Kouri, D.P., Surowiec, T.M.: Epi-regularization of risk measures. Math. Oper. Res. 45(2), 774–795 (2020). https://doi.org/10.1287/moor.2019.1013

    Article  MathSciNet  MATH  Google Scholar 

  46. Kouri, D.P., Heinkenschloss, M., Ridzal, D., van Bloemen Waanders, B.: A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM J. Sci. Comput. 35(4), A1847–A1879 (2013). https://doi.org/10.1137/120892362

    Article  MathSciNet  MATH  Google Scholar 

  47. Kouri, D.P., Surowiec, T.M.: Risk-averse optimal control of semilinear elliptic PDEs. ESAIM Control. Optim. Calc. Var. (2020). https://doi.org/10.1051/cocv/2019061

  48. Kouri, D.P., Surowiec, T.M.: A primal–dual algorithm for risk minimization. Math. Program. 193(1, Ser. A), 337–363 (2022). https://doi.org/10.1007/s10107-020-01608-9

  49. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    MATH  Google Scholar 

  50. Lachout, P., Liebscher, E., Vogel, S.: Strong convergence of estimators as \(\epsilon _n\)-minimisers of optimisation problems. Ann. Inst. Stat. Math. 57(2), 291–313 (2005). https://doi.org/10.1007/BF02507027

    Article  MATH  Google Scholar 

  51. Lass, O., Ulbrich, S.: Model order reduction techniques with a posteriori error control for nonlinear robust optimization governed by partial differential equations. SIAM J. Sci. Comput. 39(5), S112–S139 (2017). https://doi.org/10.1137/16M108269X

    Article  MathSciNet  MATH  Google Scholar 

  52. Le Cam, L.M.: On some asymptotic properties of maximum likelihood estimates and related Bayes’ estimates. Univ. California Publ. Stat., vol. 1, pp. 277–329 (1953). https://hdl.handle.net/2027/wu.89045844305

  53. Mannel, F., Rund, A.: A hybrid semismooth quasi-Newton method for nonsmooth optimal control with PDEs. Optim. Eng. 22(4), 2087–2125 (2021). https://doi.org/10.1007/s11081-020-09523-w

    Article  MathSciNet  MATH  Google Scholar 

  54. Martin, M., Krumscheid, S., Nobile, F.: Complexity analysis of stochastic gradient methods for PDE-constrained optimal control problems with uncertain parameters. ESAIM Math. Model. Numer. Anal. 55(4), 1599–1633 (2021). https://doi.org/10.1051/m2an/2021025

    Article  MathSciNet  MATH  Google Scholar 

  55. Martínez-Frutos, J., Esparza, F.P.: Optimal Control of PDEs Under Uncertainty: An Introduction with Application to Optimal Shape Design of Structures. SpringerBriefs Math. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98210-6

  56. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: Problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008). https://doi.org/10.1137/070694028

  57. Milz, J.: Topics in PDE-Constrained Optimization under Uncertainty and Uncertainty Quantification. Dissertation, Technische Universität München, München (2021)

  58. Milz, J.: Sample average approximations of strongly convex stochastic programs in Hilbert spaces. Optim. Lett. (2022). https://doi.org/10.1007/s11590-022-01888-4

    Article  MathSciNet  MATH  Google Scholar 

  59. Milz, J., Ulbrich, M.: An approximation scheme for distributionally robust PDE-constrained optimization. SIAM J. Control Optim. 60(3), 1410–1435 (2022). https://doi.org/10.1137/20M134664X

    Article  MathSciNet  MATH  Google Scholar 

  60. Nasir, Y., Volkov, O., Durlofsky, L.J.: A two-stage optimization strategy for large-scale oil field development. Optim. Eng. (2021). https://doi.org/10.1007/s11081-020-09591-y

    Article  MATH  Google Scholar 

  61. Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer Monogr. Math. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-10455-8

  62. Phelps, C., Royset, J., Gong, Q.: Optimal control of uncertain systems using sample average approximations. SIAM J. Control Optim. 54(1), 1–29 (2016). https://doi.org/10.1137/140983161

    Article  MathSciNet  MATH  Google Scholar 

  63. Pieper, K.: Finite element discretization and efficient numerical solution of elliptic and parabolic sparse control problems. Dissertation, Technische Universität München, München (2015). http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20150420-1241413-1-4

  64. Polak, E.: Optimization: Algorithms and Consistent Approximations. Appl. Math. Sci., vol. 124. Springer, New York (1997). https://doi.org/10.1007/978-1-4612-0663-7

  65. Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations, 2nd edn. Texts Appl. Math. 13. Springer, New York, NY (2004). https://doi.org/10.1007/b97427

  66. Römisch, W., Surowiec, T.M.: Asymptotic properties of Monte Carlo methods in elliptic PDE-constrained optimization under uncertainty. Preprint (2021). https://arxiv.org/abs/2106.06347

  67. Royset, J.O.: Approximations of semicontinuous functions with applications to stochastic optimization and statistical estimation. Math. Program. 184, 289–318 (2020). https://doi.org/10.1007/s10107-019-01413-z

    Article  MathSciNet  MATH  Google Scholar 

  68. Shapiro, A.: Asymptotic analysis of stochastic programs. Ann. Oper. Res. 30(1), 169–186 (1991). https://doi.org/10.1007/BF02204815

    Article  MathSciNet  MATH  Google Scholar 

  69. Shapiro, A.: Asymptotic behavior of optimal solutions in stochastic programming. Math. Oper. Res. 18(4), 829–845 (1993). https://doi.org/10.1287/moor.18.4.829

    Article  MathSciNet  MATH  Google Scholar 

  70. Shapiro, A.: Monte Carlo sampling methods. In: Stochastic Programming, Handbooks in Oper. Res. Manag. Sci., vol. 10, pp. 353–425. Elsevier, Amsterdam (2003). https://doi.org/10.1016/S0927-0507(03)10006-0

  71. Shapiro, A.: Stochastic programming approach to optimization under uncertainty. Math. Program. 112(1), 183–220 (2008). https://doi.org/10.1007/s10107-006-0090-4

    Article  MathSciNet  MATH  Google Scholar 

  72. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory, 2nd edn. MOS-SIAM Ser. Optim. SIAM, Philadelphia (2014). https://doi.org/10.1137/1.9781611973433

  73. Shapiro, A., Nemirovski, A.: On complexity of stochastic programming problems. In: Jeyakumar, V., Rubinov, A. (eds.) Continuous Optimization: Current Trends and Modern Applications, Appl. Optim., vol. 99, pp. 111–146. Springer, Boston (2005). https://doi.org/10.1007/0-387-26771-9_4

  74. Tiesler, H., Kirby, R.M., Xiu, D., Preusser, T.: Stochastic collocation for optimal control problems with stochastic PDE constraints. SIAM J. Control Optim. 50(5), 2659–2682 (2012). https://doi.org/10.1137/110835438

    Article  MathSciNet  MATH  Google Scholar 

  75. Tong, S., Subramanyam, A., Rao, V.: Optimization under rare chance constraints. SIAM J. Optim. 32(2), 930–958 (2022). https://doi.org/10.1137/20M1382490

    Article  MathSciNet  MATH  Google Scholar 

  76. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Grad. Stud. Math., vol. 112. AMS, Providence (2010). https://doi.org/10.1090/gsm/112. Translated by J. Sprekels

  77. Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM Ser. Optim. SIAM, Philadelphia (2011). https://doi.org/10.1137/1.9781611970692

  78. Volkwein, S.: Mesh-Independence of an Augmented Lagrangian-SQP Method in Hilbert Spaces and Control Problems for the Burgers Equation. Dissertation, Technical University of Berlin, Berlin (1997). https://imsc.uni-graz.at/volkwein/diss.ps

  79. Volkwein, S.: Application of the augmented Lagrangian-SQP method to optimal control problems for the stationary Burgers equation. Comput. Optim. Appl. 16(1), 57–81 (2000). https://doi.org/10.1023/A:1008777520259

    Article  MathSciNet  MATH  Google Scholar 

  80. Volkwein, S.: Mesh-independence for an augmented Lagrangian-SQP method in Hilbert spaces. SIAM J. Control Optim. 38(3), 767–785 (2000). https://doi.org/10.1137/S0363012998334468

    Article  MathSciNet  MATH  Google Scholar 

  81. Wechsung, F., Giuliani, A., Landreman, M., Cerfon, A.J., Stadler, G.: Single-stage gradient-based stellarator coil design: stochastic optimization. Nucl. Fusion 62(7), 076034 (2022). https://doi.org/10.1088/1741-4326/ac45f3

    Article  MATH  Google Scholar 

  82. Yang, H., Gunzburger, M.: Algorithms and analyses for stochastic optimization for turbofan noise reduction using parallel reduced-order modeling. Comput. Methods Appl. Mech. Eng. 319, 217–239 (2017). https://doi.org/10.1016/j.cma.2017.02.030

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

JM thanks Professor Alexander Shapiro for valuable discussions about the SAA approach. The authors thanks the two anonymous referees for their helpful comments and suggestions.

Funding

The project was partly supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project number 188264188/GRK1754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Milz.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Lack of Inf-Compactness

Appendix A: Lack of Inf-Compactness

Besides the feasible set’s lack of compactness, the set of \(\varepsilon \)-optimal solutions to the SAA problem and the level sets of the SAA problem’s objective function may be noncompact for risk-neutral PDE-constrained optimization problems. We illustrate this observation on the semilinear PDE-constrained problem

$$\begin{aligned} \min _{u\in U_\text {ad}}\, (1/2){\mathbb {E}}\left[ \left\Vert S(u,\xi )\right\Vert _{L^2(D)}^2\right] +(\alpha /2)\left\Vert u\right\Vert _{L^2(D)}^2, \end{aligned}$$
(30)

where \(\alpha > 0\), \(U_\text {ad}= \{\, u \in L^2(D) :\left\Vert u\right\Vert _{L^2(D)} \le 2\}\), \(D\subset {\mathbb {R}}^2\) is a bounded Lipschitz domain, and \(\Xi \) is as in Sect. 3. For each \((u,\xi ) \in L^2(D) \times \Xi \), the state \(S(u,\xi ) \in H_0^1(D)\) is the solution to the semilinear PDE: find \(y \in H_0^1(D)\) with

$$\begin{aligned} ( \kappa (\xi )\nabla y, \nabla v )_{L^2(D)^2} +( y^3, v )_{L^2(D)} = ( u, v )_{L^2(D)} \;\; \text {for all} \;\; v \in H_0^1(D). \end{aligned}$$
(31)

We assume that \(\kappa :\Xi \rightarrow L^\infty (D)\) is strongly measurable and that there exists \(\kappa _{\min } > 0\) with \(\kappa (\xi )\ge \kappa _{\min }\) for all \(\xi \in \Xi \). The SAA problem of (30) is given by

$$\begin{aligned} \min _{u\in U_\text {ad}}\, \frac{1}{2N}\sum _{i=1}^N \left\Vert S(u,\xi ^i)\right\Vert _{L^2(D)}^2 +(\alpha /2)\left\Vert u\right\Vert _{L^2(D)}^2, \end{aligned}$$
(32)

where \(\xi ^1, \xi ^2,\ldots \), are as in Sect. 3.

Let \({\hat{F}}_{N}\) be the objective function of (32) and let \(C_D\) be Friedrichs ’ constant of the domain \(D\). For each \((u,\xi ) \in L^2(D) \times \Xi \), we have the stability estimate (cf. [24, eqns. (2.11)])

$$\begin{aligned} \left\Vert S(u,\xi )\right\Vert _{H_0^1(D)} \le (C_D/\kappa _{\min })\left\Vert u\right\Vert _{L^2(D)}. \end{aligned}$$
(33)

The optimal value of the risk-neutral problem (30) and those of the corresponding SAA problems (32) are zero, as \(S(0,\xi ) = 0\) for all \(\xi \in \Xi \) and \(0 \in U_\text {ad}\). We define \(\varepsilon _{\max } = (C_D^2/\kappa _{\min })^2+\alpha \). Let \(\varepsilon > 0\) satisfy \(\varepsilon \le \varepsilon _{\max }\). We define \( V_{\varepsilon } = \big \{\, u \in L^2(D) :\, \left\Vert u\right\Vert _{L^2(D)}^2 \le \tfrac{2\varepsilon }{(C_D^2/\kappa _{\min })^2+\alpha } \,\big \} \). It holds that \(V_{\varepsilon } \subset U_\text {ad}\). For each \(u \in V_\varepsilon \), the stability estimate (33) and Friedrichs ’ inequality yield

$$\begin{aligned}&\frac{1}{2N} \sum _{i=1}^N \left\Vert S(u,\xi ^i)\right\Vert _{L^2(D)}^2 + (\alpha /2)\left\Vert u\right\Vert _{L^2(D)}^2\\ {}&\quad \le (1/2)(C_D^2/\kappa _{\min })^2 \left\Vert u\right\Vert _{L^2(D)}^2 + (\alpha /2)\left\Vert u\right\Vert _{L^2(D)}^2 \\&\quad \le 0 + \varepsilon . \end{aligned}$$

Hence each \(u \in V_\varepsilon \) is an \(\varepsilon \)-optimal solution to the SAA problem (32). The set \(V_\varepsilon \) is a closed ball about zero with positive radius because \(\varepsilon > 0\). Since \(L^2(D)\) is infinite dimensional, this set is noncompact [49, Theorem 2.5-5]. Therefore, as long as \({\tilde{\varepsilon }} > 0\), the level sets of the SAA objective function, \(\{ \, u \in U_\text {ad}:\, {\hat{F}}_{N}(u) \le {\tilde{\varepsilon }} \, \}\), are noncompact, as they contain the noncompact set \(V_\varepsilon \) with \(\varepsilon = \min \{{\tilde{\varepsilon }},\varepsilon _{\max }\}\). In this case, an inf-compactness condition (see [72, p. 166]) is violated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milz, J. Consistency of Monte Carlo Estimators for Risk-Neutral PDE-Constrained Optimization. Appl Math Optim 87, 57 (2023). https://doi.org/10.1007/s00245-023-09967-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-09967-3

Keywords

Mathematics Subject Classification

Navigation