Skip to main content
Log in

Global minima for semilinear optimal control problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider an optimal control problem subject to a semilinear elliptic PDE together with its variational discretization. We provide a condition which allows to decide whether a solution of the necessary first order conditions is a global minimum. This condition can be explicitly evaluated at the discrete level. Furthermore, we prove that if the above condition holds uniformly with respect to the discretization parameter the sequence of discrete solutions converges to a global solution of the corresponding limit problem. Numerical examples with unique global solutions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arada, N., Casas, E., Tröltzsch, F.: Error estimates for a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31, 993–1006 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Casas, E.: Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM Control Optim. Calc. Var. 8, 345–374 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casas, E., Mateos, M.: Uniform convergence for the FEM. Applications to state constrained control problems. Comput. Appl. Math. 21, 67–100 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Casas, E., Tröltzsch, F.: Second order optimality conditions and their role in PDE control. Jahresbericht der Deutschen Mathematiker-Vereinigung (2014). doi:10.1365/s13291-014-0109-3

  6. Casas, E., de los Reyes, J.C., Tröltzsch, F.: Sufficient second order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19(2), 616–643 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casas, E., Mateos, M., Vexler, B.: New regularity results and improved error estimates for optimal control problems with state constraints. ESAIM Control Optim. Calc. Var. 20(3), 803–822 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deckelnick, K., Hinze, M.: A Finite Element Approximation to Elliptic Control Problems in the Presence of Control and State Constraints. Hamburger Beiträge zur Angewandten Mathematik 2007-01. Universität Hamburg, Hamburg (2007)

    Google Scholar 

  9. Del Pino, M., Dolbeault, J.: Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinze, M.: A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hinze, M., Rösch, A.: Discretization of optimal control problems. Int. Ser. Numer. Math. 160, 391–431 (2011)

    MathSciNet  Google Scholar 

  13. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  14. Leykekhman, D., Vexler, B.: Finite Element Pointwise Results on Convexpolyhedral Domains. TU München, München (2015)

    MATH  Google Scholar 

  15. Nasibov, S.M.: On optimal constants in some Sobolev inequalities and their application to a nonlinear Schrödinger equation. Soviet. Math. Dokl. 40, 110–115 (1990), translation of Dokl. Akad. Nauk SSSR 307, 538–542 (1989)

  16. Neitzel, I., Pfefferer, J., Rösch, A.: Finite element discretization of state-constrained elliptic optimal control problems with semilinear state equation. SIAM J. Control Optim. 53(2), 874–904 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rannacher, Rolf, Scott, Ridgway: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38(158), 437–445 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13(3), 805–841 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Veling, E.J.M.: Lower bounds for the infimum of the spectrum of the Schrödinger operator in \({\mathbb{R}}^N\) and the Sobolev inequalities. JIPAM J. Inequal. Pure Appl. Math. [electronic only], 3, Art. 63 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hinze.

Appendix

Appendix

Lemma 7.1

We have for \(a,b \ge 0, \lambda ,\mu >0\) that

$$\begin{aligned} a^{\lambda } b^{\mu } \le \frac{\lambda ^{\lambda } \mu ^{\mu }}{(\lambda +\mu )^{\lambda +\mu }} (a+b)^{\lambda +\mu }. \end{aligned}$$

Proof

Apply Young’s inequality \( xy \le \tfrac{1}{P} \, x^P + \tfrac{1}{Q} \, y^Q \, x,y \ge 0, \, \tfrac{1}{P}+\tfrac{1}{Q}=1\) to \(P=\frac{\lambda + \mu }{\lambda }\), \(Q=\frac{\lambda + \mu }{\mu }\) and \(x= \left( P a \right) ^{\frac{1}{P}}, \, y= \left( Q b \right) ^{\frac{1}{Q}}\). \(\square \)

Lemma 7.2

Suppose that Assumption 1 holds. Then we have for \(a,b \in {\mathbb {R}}\)

$$\begin{aligned} \left| \int _0^1 \phi '\left( t a + (1-t)b \right) -\phi '(b) \, dt \right| \le | a - b| L_r \left( \int _0^1 \phi '\left( t a+ (1-t)b \right) \, dt \right) ^{\frac{1}{r}}, \end{aligned}$$

where

$$\begin{aligned} L_r{:}= M \left( \frac{r-1}{2r-1} \right) ^{\frac{r-1}{r}}. \end{aligned}$$

Proof

We start by noticing that

$$\begin{aligned} \int _0^1 \phi '\left( t a+ (1-t)b \right) -\phi '(b) \, dt&= \int _0^1 \int _0^t \phi ''\left( \tau a+ (1-\tau )b \right) (a-b) \, d\tau \, dt \\&= (a-b) \int _0^1 (1-t)\phi ''\left( t a+ (1-t)b \right) \, dt. \end{aligned}$$

Therefore, taking the absolute value and using Assumption 1 we get

$$\begin{aligned} \left| \int _0^1 \phi '\left( t a+ (1-t)b \right) -\phi '(b) \, dt \right|\le & {} | a - b | M \int _0^1 (1-t)\phi '\left( t a+ (1-t)b \right) ^{\frac{1}{r}} \, dt \\\le & {} | a - b | M \Vert 1-t \Vert _{L^{r'}(0,1)}\nonumber \\&\times \, \left( \int _0^1 \phi '\left( t a+ (1-t)b \right) \, dt \right) ^{\frac{1}{r}}, \end{aligned}$$

where \(\tfrac{1}{r}+\tfrac{1}{r'}=1\). It is easy to see that

$$\begin{aligned} \Vert 1-t \Vert _{L^{r'}(0,1)} = \left( \frac{1}{r'+1} \right) ^{\frac{1}{r'}}=\left( \frac{r-1}{2r-1} \right) ^{\frac{r-1}{r}}. \end{aligned}$$

Denoting \(M \Vert 1-t \Vert _{L^{r'}(0,1)}\) by \(L_r\) completes the proof. \(\square \)

Theorem 7.3

(Gagliardo–Nirenberg interpolation inequality)

For \(2 \le q < \infty \) we define \(\mu =1-\frac{2}{q}\) as well as

$$\begin{aligned} GN_q{:}= \sup _{f \in H^1({\mathbb {R}}^2), f \ne 0} \frac{\Vert f \Vert _{L^q({\mathbb {R}}^2)}}{\Vert f \Vert _{L^2({\mathbb {R}}^2)}^{1-\mu } \Vert \nabla f \Vert _{L^2({\mathbb {R}}^2)}^{\mu }}. \end{aligned}$$

Then \(GN_q \le C_q{:}= \min (C^{(1)}_q,C^{(2)}_q,C^{(3)}_q)\), where

$$\begin{aligned} C^{(1)}_q= & {} \left( \mu C_{2,2 \mu } \right) ^{-\mu }, \quad \text{ if } q \ge 4; \end{aligned}$$
(7.1)
$$\begin{aligned} C^{(2)}_q= & {} \frac{1}{\sqrt{\mu ^{\mu } (1- \mu )^{1 -\mu }}} \left( 2 \pi B \left( 1,\frac{2(1-\mu )}{2 \mu }\right) \right) ^{\mu /2} k_B \left( \frac{4}{2+2 \mu }\right) ; \end{aligned}$$
(7.2)
$$\begin{aligned} C^{(3)}_q= & {} \left( \frac{1}{\pi } \right) ^{\frac{q-2}{2q}} \prod _{j=2}^{\infty } \left( \frac{2^j}{2^j +q-2} \right) ^{\frac{2^j+2-q}{2^j q}}. \end{aligned}$$
(7.3)

Here,

$$\begin{aligned} C_{2,s}= & {} 2^{1/s} \left( \frac{2-s}{s-1} \right) ^{(s-1)/s} \left( 2 \pi B \left( \frac{2}{s},3-\frac{2}{s}\right) \right) ^{1/2}, \; 1< s < 2; \; C_{2,1}=2 \sqrt{\pi }; \\ B(a,b)= & {} \frac{\Gamma (a) \Gamma (b)}{\Gamma (a+b)}, \quad a,b>0 \\ k_B(p)= & {} \left( \frac{p}{2 \pi } \right) ^{1/p} \left( \frac{p'}{2 \pi } \right) ^{- 1/p'}, \quad \frac{1}{p} + \frac{1}{p'}=1. \end{aligned}$$

Proof

The bounds (7.1) and (7.2) can be found in the paper [19] by Veling. We remark that \(GN_q=\lambda _{2,\mu }^{-1}\), where \(\lambda _{2,\mu }\) is defined in [19, (1.7)]. The estimate (7.1) is [19, (1.31)] (note that \(\mu \ge \frac{1}{2} \Leftrightarrow q \ge 4\)), while (7.2) is [19, (1.42), (1.43)], where the latter bound has been proved by Nasibov in [15].

Let us now turn to the proof of (7.3). To begin, we claim that for all \(k \in {\mathbb {N}}_0\)

$$\begin{aligned} \displaystyle \Vert f \Vert _{L^q} \le \left( \frac{1}{\pi } \right) ^{\frac{1}{2}(1 - \frac{q_k}{q})} \prod _{j=2}^{k+1} \left( \frac{2^j}{2^j +q-2} \right) ^{\frac{2^j+2-q}{2^j q}} \Vert f \Vert _{L^{q_k}}^{\frac{q_k}{q}} \Vert \nabla f \Vert _{L^2}^{1-\frac{q_k}{q}}, \end{aligned}$$
(7.4)

where

$$\begin{aligned} q_k = 2^{-k} \left( q+ 2( 2^k -1) \right) . \end{aligned}$$

The inequality clearly holds for \(k=0\). Suppose that (7.4) is true for some \(k \in {\mathbb {N}}_0\). We infer from Theorem 1 in [9] for the case \(d=2\) that

$$\begin{aligned} \displaystyle \Vert f \Vert _{L^{2p}} \le A \Vert f \Vert _{L^{p+1}}^{1-\theta } \Vert \nabla f \Vert _{L^2}^{\theta }, \qquad 1<p<\infty . \end{aligned}$$
(7.5)

Here,

$$\begin{aligned}&A= \left( \frac{y(p-1)^2}{4 \pi } \right) ^{\frac{\theta }{2}} \left( \frac{2y-2}{2y} \right) ^{\frac{1}{2p}} \left( \frac{\Gamma (y)}{ \Gamma (y-1)} \right) ^{\frac{\theta }{2}} \quad \text{ with } \quad \theta = \frac{2(p-1)}{4p},\\&\quad y= \frac{p+1}{p-1}. \end{aligned}$$

Using the formula for y and observing that \(\Gamma (y)= (y-1) \Gamma (y-1)\), the expression for A can be simplified to

$$\begin{aligned} A = \left( \frac{1}{\pi } \right) ^{\frac{\theta }{2}} \left( \frac{p+1}{2} \right) ^{\frac{\theta }{2} - \frac{1}{2p}}. \end{aligned}$$

We apply (7.5) for \(p=\frac{1}{2} q_k\) and obtain

$$\begin{aligned} \displaystyle \Vert f \Vert _{L^{q_k}} \le A \Vert f \Vert _{L^{\frac{1}{2} q_k+1}}^{1-\theta } \Vert \nabla f \Vert _{L^2}^{\theta }, \end{aligned}$$
(7.6)

where

$$\begin{aligned} A= \left( \frac{1}{\pi } \right) ^{\frac{\theta }{2}} \left( \frac{\frac{1}{2} q_k+1}{2} \right) ^{\frac{\theta }{2} - \frac{1}{q_k}} \quad \text{ and } \quad \theta = \frac{q_k -2}{2 q_k}. \end{aligned}$$

Since \(\frac{1}{2} q_k+1= q_{k+1}\) we find that

$$\begin{aligned} A= \left( \frac{1}{\pi } \right) ^{\frac{\theta }{2}} \left( \frac{q_{k+1}}{2} \right) ^{\frac{\theta }{2} - \frac{1}{q_k}} \quad \text{ and } \quad \theta = 1 - \frac{q_{k+1}}{q_k}, \end{aligned}$$

which, inserted into (7.6) yields

$$\begin{aligned} \displaystyle \Vert f \Vert _{L^{q_k}} \le \left( \frac{1}{\pi } \right) ^{\frac{\theta }{2}} \left( \frac{q_{k+1}}{2} \right) ^{\frac{\theta }{2} - \frac{1}{q_k}} \Vert f \Vert _{L^{q_{k+1}}}^{1-\theta } \Vert \nabla f \Vert ^{\theta }_{L^2}. \end{aligned}$$
(7.7)

Using the induction hypothesis we infer

$$\begin{aligned} \Vert f \Vert _{L^q}\le & {} \left( \frac{1}{\pi } \right) ^{\frac{1}{2}(1 - \frac{q_k}{q})+\frac{\theta }{2} \frac{q_k}{q}} \left( \frac{q_{k+1}}{2} \right) ^{\left( \frac{\theta }{2} - \frac{1}{q_k}\right) \frac{q_k}{q}} \\&\times \,\prod _{j=2}^{k+1} \left( \frac{2^j}{2^j +q-2} \right) ^{\frac{2^j+2-q}{2^j q}} \Vert f \Vert _{L^{q_{k+1}}}^{(1-\theta )\frac{q_k}{q}} \Vert \nabla f \Vert _{L^2}^{1-\frac{q_k}{q}+\theta \frac{q_k}{q}}. \end{aligned}$$

Elementary calculations show that

$$\begin{aligned} \frac{1}{2} \left( 1 - \frac{q_k}{q} \right) +\frac{\theta }{2} \frac{q_k}{q}= & {} \frac{1}{2} \left( 1 - \frac{q_{k+1}}{q} \right) , \\ \left( \frac{q_{k+1}}{2} \right) ^{\left( \frac{\theta }{2} - \frac{1}{q_k}\right) \frac{q_k}{q}}= & {} \left( \frac{2^{k+2}}{2^{k+2} + q -2} \right) ^{\frac{2^{k+2}+2-q}{2^{k+2} q}}, \\ (1-\theta ) \frac{q_k}{q}= & {} \frac{q_{k+1}}{q}, \\ 1-\frac{q_k}{q}+\theta \frac{q_k}{q}= & {} 1 - \frac{q_{k+1}}{q}, \end{aligned}$$

which implies (7.4) for \(k+1\). The result now follows by sending \(k \rightarrow \infty \) in (7.4) and by observing that \(\lim _{k \rightarrow \infty } q_k = 2\). \(\square \)

Fig. 4
figure 4

The values of the constants \(C^{(2)}_q,C^{(3)}_q\) over the range \(2 \le q \le 10\) and \(C^{(1)}_q\) over \(4 \le q \le 10\)

Figure 4 illustrates the values of the constants (7.1)–(7.3) for a certain range of q, namely, \(2 \le q \le 10\) for \(C_q^{(2)},C_q^{(3)}\) and \(4 \le q \le 10\) for \(C_q^{(1)}\). We can see clearly that the values of \(C_q^{(1)}\) are smaller than those of \(C_q^{(2)},C_q^{(3)}\) for approximately \(q \ge 6\). In order to derive a computable upper bound on \(C_q^{(3)}\) we note that \(\frac{2^j}{2^j+q-2} \le 1\) for \(j\in {\mathbb {N}}\), and therefore

$$\begin{aligned} C^{(3)}_q \le \left( \frac{1}{\pi } \right) ^{\frac{q-2}{2q}} \prod _{j=2}^{k-1} \left( \frac{2^j}{2^j +q-2} \right) ^{\frac{2^j+2-q}{2^j q}}, \ k\ge k_0, \end{aligned}$$

where \(k_0\ge 2\) is chosen so large that \(2^{k_0}+2-q\ge 0\). In our calculations we used \(k-1=200\). All the computations of these constants are done using Mathematica 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad Ali, A., Deckelnick, K. & Hinze, M. Global minima for semilinear optimal control problems. Comput Optim Appl 65, 261–288 (2016). https://doi.org/10.1007/s10589-016-9833-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-016-9833-1

Keywords

Mathematics Subject Classification

Navigation