Skip to main content
Log in

Strong Averaging Principle for Slow–Fast Stochastic Partial Differential Equations with Locally Monotone Coefficients

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper is devoted to proving the strong averaging principle for slow–fast stochastic partial differential equations with locally monotone coefficients, where the slow component is a stochastic partial differential equations with locally monotone coefficients and the fast component is a stochastic partial differential equations with strongly monotone coefficients. The result is applicable to a large class of examples, such as the stochastic porous medium equation, the stochastic p-Laplace equation, the stochastic Burgers type equation and the stochastic 2D Navier–Stokes equation, which are the nonlinear stochastic partial differential equations. The main techniques are based on time discretization and the variational approach to stochastic partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertram, R., Rubin, J.E.: Multi-timescale systems and fast-slow analysis. Math. Biosci. 287, 105–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon and Breach Science Publishers, New York (1961)

    Google Scholar 

  3. Bréhier, C.E.: Strong and weak orders in averaging for SPDEs. Stoch. Process. Appl. 122, 2553–2593 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Appl. Probab. 19, 899–948 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cerrai, S.: Averaging principle for systems of reaction-diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. SIAM J. Math. Anal. 43, 2482–2518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cerrai, S., Freidlin, M.: Averaging principle for stochastic reaction-diffusion equations. Probab. Theory Relat. Fields 144, 137–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cerrai, S., Lunardi, A.: Averaging principle for nonautonomous slow-fast systems of stochastic reaction-diffusion equations: the almost periodic case. SIAM J. Math. Anal. 49, 2843–2884 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61, 379–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, Z., Sun, X., Xiao, H., Zhai, J.: Averaging principle for one dimensional stochastic Burgers equation. J. Differ. Equ. 265, 4749–4797 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. E, W., Engquist, B.: Multiscale modeling and computations. Not. AMS 50, 1062–1070 (2003)

  11. E, W., Liu, D., Vanden-Eijnden, E.: Analysis of multiscale methods for stochastic differential equations. Commun. Pure Appl. Math 58, 1544–1585 (2005)

  12. Fu, H., Liu, J.: Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations. J. Math. Anal. Appl. 384, 70–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, H., Wan, L., Liu, J.: Strong convergence in averaging principle for stochastic hyperbolic-parabolic equations with two time-scales. Stoch. Process. Appl. 125, 3255–3279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, P.: Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discret. Contin. Dyn. Syst. A 38, 5649–5684 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, P.: Averaging principle for the higher order nonlinear Schrödinger equation with a random fast oscillation. J. Stat. Phys. 171, 897–926 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, P.: Averaging principle for multiscale stochastic Klein-Gordon-heat system. J. Nonlinear Sci. 29(4), 1701–1759 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harvey, E., Kirk, V., Wechselberger, M., Sneyd, J.: Multiple timescales, mixed mode oscillations and canards in models of intracellular calcium dynamics. J. Nonlinear Sci. 21, 639–683 (2011)

    Article  MATH  Google Scholar 

  18. Khasminskii, R.Z.: On the principle of averaging the Itô stochastic differential equations. Kibernetica 4, 260–279 (1968)

    Google Scholar 

  19. Li, S., Sun, X., Xie, Y., Zhao, Y.: Averaging principle for two dimensional stochatsic Navier–Stokes equations. arXiv:1810.02282

  20. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  21. Liu, W., Röckner, M., Sun, X., Xie, Y.: Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients. J. Differ. Equ. 268(6), 2910–2948 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mastny, E.A., Haseltine, E.L., Rawlings, J.B.: Two classes of quasi-steady-state model reductions for stochastic kinetics. J. Chem. Phys. 127, 094106 (2007)

    Article  Google Scholar 

  23. Øksendal, B.: Stochastic Differential Equations. An Introduction with Application. Springer, Berlin (1995)

    MATH  Google Scholar 

  24. Wang, W., Roberts, A.J.: Average and deviation for slow-fast stochastic partial differential equations. J. Differ. Equ. 253, 1265–1286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W., Roberts, A.J., Duan, J.: Large deviations and approximations for slow-fast stochastic reaction-diffusion equations. J. Differ. Equ. 253, 3501–3522 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors would like to thank the referees for some valuable comments. This work is supported by the National Natural Science Foundation of China (Nos. 11931004, 12171208, 11831014, 12271219, 12090011), the QingLan Project of Jiangsu Provience and the PAPD Project of Jiangsu Higher Education Institutions. Financial support of the DFG through CRC 1283 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Sun.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

At the end of this section, we give the proof of Theorem 2.3 based on the techniques used in [20, Theorem 5.1.3].

Proof of Theorem 2.3

Let \(\mathcal {H}:={H_1}\times H_2\) be the product Hilbert space. For any \(\phi =(\phi _1,\phi _2),\varphi =(\varphi _1,\varphi _2)\in \mathcal {H}\), we denote the scalar product and the induced norm by

$$\begin{aligned} \langle \phi ,\varphi \rangle _{\mathcal {H}}=\langle \phi _1, \varphi _1\rangle _{H_1}+\langle \phi _2, \varphi _2\rangle _{H_2},~~ \Vert \phi \Vert _{\mathcal {H}}=\sqrt{\langle \phi ,\phi \rangle _{\mathcal {H}}}=\sqrt{\Vert \phi _1\Vert ^2_{H_1}+\Vert \phi _2\Vert ^2_{H_2}}. \end{aligned}$$

Similarly, we also define \(\mathcal {V}:=V_1\times V_2\). Then \(\mathcal {V}\) is a reflexive Banach space with the following norm:

$$\begin{aligned} \Vert \phi \Vert _{\mathcal {V}}=\sqrt{\Vert \phi _1\Vert _{V_1}^2+\Vert \phi _2\Vert _{V_2}^2}. \end{aligned}$$

Now we rewrite the system (1.1) for \(Z^{\varepsilon }_t=(X^{\varepsilon }_t,Y^{\varepsilon }_t)\) as

$$\begin{aligned} dZ^{\varepsilon }_t=\tilde{A}(Z^{\varepsilon }_t)dt+G(Z^{\varepsilon }_t)dW_t,\quad Z^{\varepsilon }_0=(x,y)\in \mathcal {H}, \end{aligned}$$
(5.1)

where \(W_t:=(W_t^{1},W_t^{2})\), which is a \(U_1\times U_2\)-valued cylindrical-Wiener process and

$$\begin{aligned}{} & {} \tilde{A}(Z^{\varepsilon }_t)=\left( A(X^{\varepsilon }_t)+F(X^{\varepsilon }_t,Y^{\varepsilon }_t),\frac{1}{\varepsilon }B(X^{\varepsilon }_t,Y^{\varepsilon }_t)\right) ,\\{} & {} G(Z^{\varepsilon }_t)=\left( G_1(X^{\varepsilon }_t),\frac{1}{\sqrt{\varepsilon }}G_2(X^{\varepsilon }_t,Y^{\varepsilon }_t)\right) . \end{aligned}$$

Moreover, G is an operator from \(\mathcal {V}\) to \(L_{2}(\mathcal {U},\mathcal {H})\), where \(\mathcal {U}:=U_1\times U_2\) and \(L_{2}(\mathcal {U},\mathcal {H})\) is the space of Hilbert-Schmidt operators from \(\mathcal {U}\) to \(\mathcal {H}\). The norm in \(L_{2}(\mathcal {U},\mathcal {H})\) is defined by

$$\begin{aligned} \Vert G(z)\Vert _{L_{2}(\mathcal {U},\mathcal {H})}=\sqrt{\Vert G_1(x)\Vert _{L_{2}(U_1,H_1)}^2+\frac{1}{\varepsilon }\Vert G_2(x, y)\Vert _{L_{2}(U_2,H_2)}^2},\quad z=(x,y)\in \mathcal {V}. \end{aligned}$$

Let \(\mathcal {V}^{*}\) be the dual space of \(\mathcal {V}\) and we consider the following Gelfand triple \(\mathcal {V}\subset \mathcal {H}\equiv \mathcal {H}^{*}\subset \mathcal {V}^{*}\). It is easy to see that the following mappings

$$\begin{aligned} \tilde{A}:\mathcal {V}\rightarrow \mathcal {V}^{*},\quad G:\mathcal {V}\rightarrow L_{2}(\mathcal {U},\mathcal {H}) \end{aligned}$$

are well defined. To complete the proof, we only check whether the new coefficients in equation (5.1) satisfy the local monotonicity, coercivity and growth properties by [20, Theorem 5.1.3].

Indeed, for any \(w_1=(u_1,v_1),w_2=(u_2,v_2)\in \mathcal {V}\), by conditions A2 and B2, we have

$$\begin{aligned}{} & {} 2{_{\mathcal {V}^{*}}}\langle \tilde{A}(w_1)-\tilde{A}(w_2),w_1-w_2\rangle _{\mathcal {V}}+\Vert G(w_1)-G(w_2)\Vert ^2_{L_{2}(\mathcal {U},\mathcal {H})}\\{} & {} \quad =2{_{V^{*}_1}}\langle A(u_1)-A(u_2),u_1-u_2\rangle _{V_1}+\langle F(u_1,v_1)-F(u_2,v_2),u_1-u_2\rangle _{H_1}\\{} & {} \qquad +\frac{2}{\varepsilon }{_{V^{*}_2}}\langle B(u_1,v_1)-B(u_2,v_2),v_1-v_2\rangle _{V_2}+\Vert G_1(u_1)-G_1(u_2)\Vert ^2_{L_{2}(U_1, H_1)}\\{} & {} \qquad +\frac{1}{{\varepsilon }}\Vert G_2(u_1,v_1)-G_2(u_2,v_2)\Vert ^2_{L_{2}(U_2,H_2)}\\{} & {} \quad \leqslant C\left[ (1+\Vert u_2\Vert ^{\alpha }_{V_1})(1+\Vert u_2\Vert ^{\beta }_{H_1})\right] \Vert u_1-u_2\Vert ^2_{H_1}-\frac{\gamma }{2{\varepsilon }}\Vert v_1-v_2\Vert ^2_{H_2}\\{} & {} \qquad +C_{{\varepsilon }}\Vert u_1-u_2\Vert ^2_{H_1}+C\Vert u_1-u_2\Vert _{H_1}\Vert v_1-v_2\Vert _{H_2}\\{} & {} \quad \leqslant C_{{\varepsilon }}\left[ (1+\Vert w_2\Vert ^{\alpha }_{\mathcal {V}})(1+\Vert w_2\Vert ^{\beta }_{\mathcal {H}})\right] \Vert w_1-w_2\Vert ^2_{\mathcal {H}}, \end{aligned}$$

which implies that the local monotonicity condition holds.

For any \(w=(u,v)\in \mathcal {V}\), there exist constants \(C_{{\varepsilon }}>0\) and \(C>0\) such that

$$\begin{aligned}{} & {} 2{_{\mathcal {V}^{*}}}\langle \tilde{A}(w), w\rangle _{\mathcal {V}}+\Vert G(w)\Vert ^2_{L_{2}(\mathcal {U},\mathcal {H})}\\{} & {} \quad =2{_{V^{*}_1}}\langle A(u),u\rangle _{V_1} +\frac{2}{\varepsilon }{_{V^{*}_2}}\langle B(u,v),v\rangle _{V_2}+\langle F(u,v),u\rangle _{H_1}\\{} & {} \qquad +\Vert G_1(u)\Vert ^2_{L_{2}(U_1, H_1)}+\frac{1}{{\varepsilon }}\Vert G_2(u,v)\Vert ^2_{L_{2}(U_2,H_2)}\\{} & {} \quad \leqslant C\Vert u\Vert ^2_{H_1}-\theta \Vert u\Vert ^{\alpha }_{V_1}+C+\frac{1}{{\varepsilon }}\left[ C(1+\Vert u\Vert ^2_{H_1}+\Vert v\Vert ^2_{H_2})-\eta \Vert v\Vert ^{\kappa }_{V_2}\right] \\{} & {} \quad \leqslant C_{{\varepsilon }}(1+\Vert w\Vert ^2_{\mathcal {H}})-C_{{\varepsilon }}(\Vert u\Vert ^{\alpha }_{V_1}+\Vert v\Vert ^{\kappa }_{V_2}) \end{aligned}$$

and

$$\begin{aligned} \Vert \tilde{A}(w)\Vert _{\mathcal {V}^{*}}\leqslant & {} \Vert A(u)\Vert _{V^{*}_1}+\frac{1}{{\varepsilon }}\Vert B(u,v)\Vert _{V^{*}_2}+\Vert F(u,v)\Vert _{H_1}\\\leqslant & {} C(1+\Vert u\Vert ^{\alpha -1}_{V_1})(1+\Vert u\Vert ^{\frac{\beta (\alpha -1)}{\alpha }}_{H_1})\\{} & {} +\frac{C}{{\varepsilon }}\left( 1+\Vert u\Vert _{H_1}+\Vert v\Vert _{H_2}+\Vert u\Vert ^{\frac{2(\kappa -1)}{\kappa }}_{H_1}\right) +\frac{C}{{\varepsilon }}\left( 1+\Vert v\Vert ^{\kappa -1}_{V_2}\right) \\\leqslant & {} C_{{\varepsilon }}(1+\Vert u\Vert ^{\alpha -1}_{V_1}+\Vert v\Vert ^{\kappa -1}_{V_2})(1+\Vert w\Vert ^{\tilde{\beta }}_{\mathcal {H}}), \end{aligned}$$

for some \(\tilde{\beta }> 0\), which implies that the coercivity and growth conditions hold. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Röckner, M., Sun, X. et al. Strong Averaging Principle for Slow–Fast Stochastic Partial Differential Equations with Locally Monotone Coefficients. Appl Math Optim 87, 39 (2023). https://doi.org/10.1007/s00245-022-09956-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09956-y

Keywords

Mathematics Subject Classification

Navigation