Skip to main content
Log in

Gambling for Resurrection and the Heat Equation on a Triangle

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider the problem of controlling the diffusion coefficient of a diffusion with constant negative drift rate such that the probability of hitting a given lower barrier up to some finite time horizon is minimized. We assume that the diffusion rate can be chosen in a progressively measurable way with values in the interval [0, 1]. We prove that the value function is regular, concave in the space variable, and that it solves the associated HJB equation. To do so, we show that the heat equation on a right triangle, with a boundary condition that is discontinuous in the corner, possesses a smooth solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abundo, M.: Some conditional crossing results of Brownian motion over a piecewise-linear boundary. Stat. Probab. Lett. 58(2), 131–145 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Althöfer, I., Beckmann, M., Salzer, F.: On some random walk games with diffusion control. In: Plaat, A., van den Herik, J., Kosters, W. (eds.) Advances in Computer Games, pp. 65–75. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  3. Ankirchner, S., Blanchet-Scalliet, C., Jeanblanc, M.: Controlling the occupation time of an exponential martingale. Appl. Math. Optim. 76(2), 415–428 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific Publishing Co Pte Ltd, Singapore (2010)

    Book  MATH  Google Scholar 

  5. Asmussen, S., Taksar, M.: Controlled diffusion models for optimal dividend pay-out. Insurance 20(1), 1–15 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Avellaneda, M., Levy, A., Parás, A.: Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance 2(2), 73–88 (1995)

    Article  MATH  Google Scholar 

  7. Azcue, P., Muler, N.: Stochastic Optimization in Insurance: A Dynamic Programming Approach. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  8. Bäuerle, N., Bayraktar, E.: A note on applications of stochastic ordering to control problems in insurance and finance. Stoch. Int. J. Probab. Stoch. Process. 86(2), 330–340 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bayraktar, E., Young, V.R.: Correspondence between lifetime minimum wealth and utility of consumption. Finance Stoch. 11(2), 213–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bayraktar, E., Young, V.R.: Optimal investment strategy to minimize occupation time. Ann. Oper. Res. 176, 389–408 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bayraktar, E., Young, V.R.: Proving regularity of the minimal probability of ruin via a game of stopping and control. Finance Stoch. 15(4), 785–818 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertoin, J., Chaumont, L., Pitman, J., et al.: Path transformations of first passage bridges. Electron. Commun. Probab. 8, 155–166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Biane, P., Yor, M.: Quelques précisions sur le méandre brownien. Bull. Sci. Math. 112(1), 101–109 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion–Facts and Formulae. Probability and Its Applications, 2nd edn. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  15. Browne, S.: Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Math. Oper. Res. 20(4), 937–958 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Callander, S.: Searching for good policies. Am. Polit. Sci. Rev. 105(4), 643–662 (2011)

    Article  Google Scholar 

  17. Callander, S., et al.: A theory of policy expertise. Q. J. Polit. Sci. 3(2), 123–140 (2008)

    Article  MathSciNet  Google Scholar 

  18. Caraco, T., Martindale, S., Whittam, T.S.: An empirical demonstration of risk-sensitive foraging preferences. Anim. Behav. 28(3), 820–830 (1980)

    Article  Google Scholar 

  19. David Promislow, S., Young, V.R.: Minimizing the probability of ruin when claims follow brownian motion with drift. N. Am. Actuar. J. 9(3), 110–128 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. de l’Assurance, F.F.: Les assurances de bien et de responsabilité, données clés 2015, (2016)

  21. Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16(2), 827–852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Downs, G.W., Rocke, D.M.: Conflict, agency, and gambling for resurrection: the principal-agent problem goes to war. Am. J. Polit. Sci. 38, 362–380 (1994)

    Article  Google Scholar 

  23. Fokas, A., Kalimeris, K.: The heat equation in the interior of an equilateral triangle. Stud. Appl. Math 124, 283–305 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Glick, D., Myers, C.D.: Learning from others: an experimental test of brownian motion uncertainty models. J. Theor. Polit. 27(4), 588–612 (2015)

    Article  Google Scholar 

  25. Hipp, C., Vogt, M.: Optimal dynamic xl reinsurance. ASTIN Bull. 33(2), 193–207 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iglehart, L.D.: Diffusion approximations in collective risk theory. J. Appl. Probab. 6(2), 285–292 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liang, Z., Guo, J.: Optimal proportional reinsurance and ruin probability. Stoch. Models 23(2), 333–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matoussi, A., Possamaï, D., Zhou, C.: Robust utility maximization in non-dominated models with 2bsde: the uncertain volatility model. Math. Finance 25(2), 258–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. McNamara, J., Houston, A., Collins, E.J.: Optimality models in behavioral biology. Siam Rev. 43(3), 413–466 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. McNamara, J.M.: Optimal control of the diffusion coefficient of a simple diffusion process. Math. Oper. Res. 8(3), 373–380 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. of British Insurers. U.k. insurance and long-term savings, the state of the market 2019, (2020)

  32. Peng, S.: G-expectation, g-brownian motion and related stochastic calculus of itô type. In: Benth, F.E., et al. (eds.) Stochastic Analysis and Applications, pp. 541–567. Springer, Berlin (2007)

    Chapter  MATH  Google Scholar 

  33. Salminen, P.: On last exit decompositions of linear diffusions. Studia Sci. Math. Hungar. 33(1–3), 251–262 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Salminen, P., Yor, M.: On hitting times of affine boundaries by reflecting brownian motion and bessel processes. Period. Math. Hung. 62(1), 75–101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schmidli, H.: Optimal proportional reinsurance policies in a dynamic setting. Scand. Actuar. J. 2001(1), 55–68 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schmidli, H.: Stochastic Control in Insurance. Springer Science & Business Media, Berlin (2007)

    MATH  Google Scholar 

  37. Schmidli, H., et al.: On minimizing the ruin probability by investment and reinsurance. Ann. Appl. Probab. 12(3), 890–907 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Smith, W., Watson, G.: Diffusion out of a triangle. J. Appl. Probab. 4(3), 479–488 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stephens, D.W.: The logic of risk-sensitive foraging preferences. Anim. Behav. 29, 628–629 (1981)

    Article  Google Scholar 

  40. Stephens, D.W., Krebs, J.R.: Foraging Theory, vol. 1. Princeton University Press, Princeton (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Kazi-Tani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. Zhou: Research supported by NSFC Grant No. 11871364 as well as Singapore MOE (Ministry of Educations) AcRF Grants R-146-000-271-112 and R-146-000-284-114.

Appendix. A

Appendix. A

In this appendix we prove the continuity and smoothness properties of the function H claimed in Theorem 3.3. To shorten notation, we take \(b=1\) and we show the respective properties for

$$\begin{aligned} \overline{H}(t,x) := 1- H(t,x) = P\big (\rho ^{t,x}_u < \rho ^{t,x}_\ell \big ). \end{aligned}$$

Lemma A.1

For every t, \(x\in (t,T)\mapsto \overline{H}(t,x)\) is continuous.

Proof

Let \(t\in [0,T)\) and \(\delta >0\), we prove that for all \(x\in [t,T-\delta ]\), the function is continuous in x. For \(t<x<T-\delta \), using Proposition 3.1, and a simple change of variables, we get

$$\begin{aligned} \overline{H}(t,x) = \int _0^{T-t} \frac{1}{\sqrt{2\pi }u^{3/2}}\exp \left( -\frac{(T-x)^2}{2u}\right) \sum _{k=-\infty }^{+\infty } h_k(u,x) \, du, \end{aligned}$$
(A.1)

with

$$\begin{aligned} h_k(u,x)&:= [T-x-2k(T-t)]\\&\quad \times \exp \left( -2k^2\frac{(T-u-t)(T-t)}{u}\right) \exp \left( 2k\frac{(T-u-t)(T-x)}{u}\right) . \end{aligned}$$

Note that \(\sum _{k=-\infty }^{+\infty } h_k(u,x) \leqslant 1\), since it is a probability.

  1. 1.

    For all \(x\in [t,T-\delta ]\),

    $$\begin{aligned} \frac{1}{\sqrt{2\pi }u^{3/2}}\exp \left( -\frac{(T-x)^2}{2u}\right) \le \frac{1}{\sqrt{2\pi }u^{3/2}}\exp \left( -\frac{(T-(T-\delta ))^2}{2u}\right) , \end{aligned}$$

    and this function \(u\mapsto \frac{1}{\sqrt{2\pi }u^{3/2}}\exp \left( -\frac{(T-(T-\delta ))^2}{2u}\right) \) is integrable on \((0,T-t)\).

  2. 2.

    \(x \mapsto \frac{1}{\sqrt{2\pi }u^{3/2}}\exp \left( -\frac{(T-x)^2}{2u}\right) \) is continuous on \([t,T-\delta ]\).

  3. 3.

    Let us prove that the series \(\sum _{k=-\infty }^{+\infty } h_k(u,x)\) is a continuous function of x. Since each \(h_k\) is a continuous function of x, it is sufficient to prove that the series converges uniformly, which is implied by the fact that

    $$\begin{aligned}&\sum _{k=-\infty }^{+\infty } \sup _{t\le x\le T} \left| h_k(u,x)\right| <+\infty , \text { since}\\&\quad \left| h_k(u,x)\right| \le (T-t)|2k-1|\exp \left( -2\frac{(T-u-t)(T-t)}{u} k(k-1)\right) . \end{aligned}$$

The point 1. above and the fact that \(\sum _{k=-\infty }^{+\infty } h_k(u,x) \leqslant 1\) show that the integrand in (A.1) is bounded from above by an integrable function, which is independent of x. The points 2. and 3. allow to deduce that the integrand in (A.1) is a continuous function of x. Hence \(x\mapsto \overline{H}(t,x)\) is continuous, for \(t<x<T\).

Let us now prove that \(\lim _{x\rightarrow T^-}\overline{H}(t,x)=1\). Recall that

$$\begin{aligned} \overline{H}(t,x)&= \int _t^{T} f(u) \sum _{k=-\infty }^{+\infty } \left( 1-2k\frac{T-t}{T-x}\right) \\&\quad \times \exp \left( \frac{T-u}{u-t}\left[ -2k^2(T-t)+2k(T-x)\right] \right) \, du, \end{aligned}$$

with

$$\begin{aligned} f(u) = \left\{ \begin{array}{ll} \frac{T-x}{\sqrt{2\pi }(u-t)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(u-t)}\right) &{} \text{ if } x<T \\ \mathbf {1}_{\{u=t\}} &{} \text{ if } x=T. \end{array} \right. \end{aligned}$$

Isolating the term \(k=0\) in the sum, we get,

$$\begin{aligned}&\overline{H}(t,x) = \int _t^{T} \left\{ f(u) + \frac{1}{\sqrt{2\pi }(u-t)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(u-t)}\right) \right. \\&\quad \left. \times \sum _{k=-\infty , k\ne 0}^{+\infty } \left( T-x-2k(T-t)\right) \exp \left( \frac{T-u}{u-t}\left[ -2k^2(T-t)+2k(T-x)\right] \right) \right\} \, du. \end{aligned}$$

When \(x\rightarrow T\), the second term in the previous integral simplifies to

$$\begin{aligned} \frac{1}{\sqrt{2\pi }(u-t)^{3/2}} \sum _{k=-\infty , k\ne 0}^{+\infty } \left( -2k(T-t)\right) \exp \left( \frac{T-u}{u-t}\left[ -2k^2(T-t)\right] \right) =0, \end{aligned}$$

and

$$\begin{aligned} \lim _{x\rightarrow T} \overline{H}(t,x) = \lim _{x\rightarrow T} \int _t^{T} f(u) \, du = 1. \end{aligned}$$

Finally, for \(x=t\), we have

$$\begin{aligned} \overline{H}(t,t) = \int _t^{T} f(u) \sum _{k=-\infty }^{+\infty } \left( 1-2k\right) \exp \left( \frac{(T-u)(T-t)}{u-t}2k(1-k) \right) \, du=0, \end{aligned}$$

since

$$\begin{aligned} \sum _{k=-N}^{N} \left( 1-2k\right) \exp \left( Ck(1-k) \right) = \frac{2N+1}{\exp (CN(N+1))} \end{aligned}$$

goes to 0 as N goes to \(+\infty \), for any \(C>0\). \(\square \)

The following observations will be useful: we can write \(\overline{H}(t,x)\) in the following way:

$$\begin{aligned} \overline{H}(t,x)&= \int _t^{T} \frac{1}{\sqrt{2\pi }(u-t)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(u-t)}\right) \nonumber \\&\quad \times \left\{ T-x-4(T-t)\sum _{k=1}^{+\infty } k \exp (-2k^2C_{t,u,T})\sinh \left( 2k(T-x)\frac{T-u}{u-t}\right) \right. \nonumber \\&\quad \left. +2(T-x)\sum _{k=1}^{+\infty } \exp (-2k^2C_{t,u,T})\cosh \left( 2k(T-x)\frac{T-u}{u-t}\right) \right\} \, du, \end{aligned}$$
(A.2)

with \(C_{t,u,T}:= \frac{(T-t)(T-u)}{u-t}\). This can be written

$$\begin{aligned} \overline{H}(t,x) =&\int _t^{T} h(x,u)\, du, \end{aligned}$$

with

$$\begin{aligned} h(x,u):= g(x,u)\times \Big \{T-x-4(T-t)\sum _{k=1}^{+\infty }f^1_k(x,u)+ 2(T-x)\sum _{k=1}^{+\infty }f^2_k(x,u)\Big \}. \end{aligned}$$

Lemma A.2

Both series \(\sum f^1_k\) and \(\sum f^2_k\) are \(\mathcal C^2\) functions of x and

$$\begin{aligned} \frac{\partial ^2}{\partial x^2} \sum f^i_k = \sum \frac{\partial ^2}{\partial x^2}f^i_k, \quad i=1,2. \end{aligned}$$

Proof

We will prove the claim for \(\sum f^1_k\), the proof for \(\sum f^2_k\) being very similar. For any \(k\ge 1\), the map \(x\mapsto f^1_k(x,u)\) is \(C^2\) and

$$\begin{aligned} \frac{\partial ^2}{\partial x^2} f^1_k(x,u) = 4k^3 \exp (-2k^2C_{t,u,T})\left( \frac{T-u}{u-t}\right) ^2 \sinh \left( 2k(T-x)\frac{T-u}{u-t}\right) . \end{aligned}$$

The function \(\sinh \) being increasing,

$$\begin{aligned} \left| \frac{\partial ^2}{\partial x^2} f^1_k(x,u)\right| \le 4k^3 \exp (-2k^2C_{t,u,T})\left( \frac{T-u}{u-t}\right) ^2 \sinh \left( 2k(T-t)\frac{T-u}{u-t}\right) , \end{aligned}$$

which implies that the series \(\sum \frac{\partial ^2}{\partial x^2} f^1_k(x,u)\) converges uniformy, and from which we deduce the claim. \(\square \)

Lemma A.3

For every t, \(x\mapsto \overline{H}(t,x)\) is \(\mathcal C^2\).

Proof

As previously, let \(x\in [t,T-\delta ]\) where \(\delta >0\). We have

$$\begin{aligned} \frac{\partial g}{\partial x}(x,u)&= \frac{1}{\sqrt{2\pi }(u-t)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(u-t)}\right) \left[ \frac{T-x}{u-t}\right] ,\\ \frac{\partial ^2g}{\partial x^2}(x,u)&= \frac{1}{\sqrt{2\pi }(u-t)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(u-t)}\right) \left[ \frac{(T-x)^2}{(u-t)^2}-\frac{1}{u-t}\right] . \end{aligned}$$

Using Lemma A.2, we get

$$\begin{aligned} \frac{\partial ^2h}{\partial x^2}(x,u) = \frac{1}{\sqrt{2\pi }(u-t)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(u-t)}\right) (I_1+I_2+I_3), \end{aligned}$$

where

$$\begin{aligned} I_1&:= \left[ \frac{(T-x)^2}{(u-t)^2}-\frac{1}{u-t}\right] \Big \{T-x-4(T-t)\sum _{k=1}^{+\infty }f^1_k(x,u)\\&\quad +2(T-x)\sum _{k=1}^{+\infty }f^2_k(x,u)\Big \}, \\ I_2&:= -16(T-t)\frac{(T-u)^2}{(u-t)^2} \sum _{k=1}^{+\infty } k^3 \exp (-2k^2C_{t,u,T})\sinh \left( 2k(T-x)\frac{T-u}{u-t}\right) \\&\quad +8\frac{T-u}{u-t} \sum _{k=1}^{+\infty } k \exp (-2k^2C_{t,u,T})\sinh \left( 2k(T-x)\frac{T-u}{u-t}\right) \\&\quad +8(T-x)\frac{(T-u)^2}{(u-t)^2} \sum _{k=1}^{+\infty } k^2 \exp (-2k^2C_{t,u,T})\cosh \left( 2k(T-x)\frac{T-u}{u-t}\right) , \end{aligned}$$

and

$$\begin{aligned} I_3&:= \left[ \frac{T-x}{u-t}\right] \\&\quad \times \left\{ -1+8C_{t,u,T} \sum _{k=1}^{+\infty } k^2 \exp (-2k^2C_{t,u,T})\cosh \left( 2k(T-x)\frac{T-u}{u-t}\right) \right. \\&\quad -2 \sum _{k=1}^{+\infty } \exp (-2k^2C_{t,u,T})\cosh \left( 2k(T-x)\frac{T-u}{u-t}\right) \\&\quad \left. - 4\frac{(T-u)(T-x)}{u-t}\sum _{k=1}^{+\infty } k \exp (-2k^2C_{t,u,T})\sinh \left( 2k(T-x)\frac{T-u}{u-t}\right) \right\} . \end{aligned}$$

We have

$$\begin{aligned} \left| \frac{1}{\sqrt{2\pi }(u-t)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(u-t)}\right) I_1\right| \le g(x,u)\left( \frac{T-x}{u-t}\right) ^2+g(x,u)\frac{1}{u-t}. \end{aligned}$$

For any \(x\in [t, T-\delta ]\), we have

$$\begin{aligned} g(x,u)\left( \frac{T-x}{u-t}\right) ^2 \le \frac{(T-t)^2}{\sqrt{2\pi }(u-t)^{5/2}}\exp \left( -\frac{(T-(T-\delta )^2}{2(u-t)}\right) , \end{aligned}$$

and

$$\begin{aligned} g(x,u)\frac{1}{u-t}\le \frac{1}{\sqrt{2\pi }(u-t)^{5/2}}\exp \left( -\frac{(T-(T-\delta )^2}{2(u-t)}\right) . \end{aligned}$$

The two functions on the RHS are integrable on \((0,T-t)\).

We can show that all the terms appearing in the quantities \(\left| \frac{1}{\sqrt{2\pi }(u-t)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(u-t)}\right) I_2\right| \) and \(\left| \frac{1}{\sqrt{2\pi }(u-t)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(u-t)}\right) I_3\right| \) are bounded from above by \(\frac{K}{(u-t)^{1/2}}\), for \(u\in (t,t+\varepsilon )\), where \(\varepsilon >0\) and where K is a positive constant (independent of u and x). Let us for example study in detail the term

$$\begin{aligned} \tilde{I}_2&:= \frac{1}{\sqrt{2\pi }(u-t)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(u-t)}\right) 16(T-t)\frac{(T-u)^2}{(u-t)^2} \\&\quad \times \sum _{k=1}^{+\infty } k^3 \exp (-2k^2C_{t,u,T})\sinh \left( 2k(T-x)\frac{T-u}{u-t}\right) , \end{aligned}$$

the arguments for the other terms are very similar.

Using that \(\sinh \) is increasing and that \(C_{t,u,T} = \frac{(T-t)^2}{u-t}- (T-t)\), we get

$$\begin{aligned} \left| \tilde{I}_2\right|&\le \frac{1}{\sqrt{2\pi }(u-t)^{3/2}} \exp \left( -\frac{(T-x)^2}{2(u-t)}\right) 16\frac{(T-t)^3}{(u-t)^2}\\&\quad \times \sum _{k=1}^{+\infty } k^3 \exp \left( -k^2\left[ \frac{2(T-t)^2}{u-t}-2(T-t)\right] \right) \sinh \left( 2k\frac{(T-t)^2}{u-t}\right) . \end{aligned}$$

Define

$$\begin{aligned} S(u):= \sum _{k=1}^{+\infty } k^3 \exp \left( -k^2\left[ \frac{c}{u}-c'\right] \right) \sinh \left( k\frac{c}{u}\right) , \quad 0<u\le (T-t) \end{aligned}$$

where \(c=2(T-t)^2\) and \(c'=2(T-t)\) (\(\frac{c}{u}-c'\ge 0\) for \(u\le T-t\)). We are going to prove that \(\lim _{u\rightarrow 0^+} u\log S(u) = 0\). Assuming momentarily that this limit is indeed equal to 0, then there exists \(\bar{u}>t\) such that for any \(u\le \bar{u}\),

$$\begin{aligned} 2(u-t)\log S(u-t)-2(u-t)\log \left( \frac{(2\pi )^{1/6}(u-t)}{2^{4/3}(T-t)}\right) ^3\le T-(T-\delta ). \end{aligned}$$

This implies for any \(x\in [t,T-\delta ]\) and any \(u\le \bar{u}\),

$$\begin{aligned} \frac{1}{\sqrt{2\pi }(u-t)^{3/2}} \exp \left( -\frac{(T-x)^2}{2(u-t)}\right) 16\frac{(T-t)^3}{(u-t)^2} S(u-t)\le \frac{1}{(u-t)^{1/2}}. \end{aligned}$$

This implies, by splitting the interval [tT] into \([t,t+\varepsilon )\) and \([t+\varepsilon , T]\) with \(\varepsilon \) small enough, that \(\left| \frac{\partial ^2h}{\partial x^2}(x,u)\right| \) is bounded from above by an integrable function which is independent of x, on each of these intervals. Using similar arguments as in the proof of Lemma A.2, we can show that \(x \mapsto \frac{\partial ^2h}{\partial x^2}(x,u)\) is a continuous function. From this, we can conclude that \(x\mapsto \overline{H}(t,x)\) is \(\mathcal C^2\).

It remains to prove that \(\lim _{u\rightarrow 0^+} u\log S(u) = 0\), which is the purpose of Lemma A.4. \(\square \)

Lemma A.4

\(\lim _{u\rightarrow 0^+} u\log S(u) = 0\).

Proof

Define,

$$\begin{aligned} \varphi (v,u):= \frac{1}{2} v^3 \exp \left( -v^2\left[ \frac{c}{u}-c'\right] \right) \left( \exp \left( v\frac{c}{u}\right) - \exp \left( -v\frac{c}{u}\right) \right) , \quad v>1, \end{aligned}$$
(A.3)

which is a differentiable function such that

$$\begin{aligned} \frac{\partial \varphi }{\partial v} (v,u)= & {} \exp \left( -v^2\left[ \frac{c}{u}-c'\right] \right) v^2\left[ v \frac{c}{u} \cosh \left( v \frac{c}{u}\right) \right. \\&\left. -\left( 2 v^2\left[ \frac{c}{u}-c'\right] -3\right) \sinh \left( v \frac{c}{u}\right) \right] . \end{aligned}$$

The sign of this derivative is given by the sign of \(v \frac{c}{u} \cosh \!\left( \!v \frac{c}{u}\!\right) \!-\!\left( \!2 v^2[\frac{c}{u}\!-\!c'] \!-\!3\!\right) \sinh \!\left( \!v \frac{c}{u}\!\right) \), which is going to be negative for u small enough. Indeed, this quantity is negative if and only if

$$\begin{aligned} \tanh \left( v \frac{c}{u}\right) \left( 2v - 2v \frac{c'}{c}u - \frac{3}{v} \frac{u}{c}\right) >1. \end{aligned}$$

Since \(\tanh \left( v \frac{c}{u}\right) \left( 2v - 2v \frac{c'}{c}u - \frac{3}{v} \frac{u}{c}\right) \) converges to \(2v>1\) as u goes to 0, we have that \(v\mapsto \varphi (v,u)\) is decreasing for u small enough. We can then apply the standard technique of comparison between series and integrals: for \(k \ge 1\),

$$\begin{aligned} \int _k^{k+1}\varphi (v,u) dv \le \varphi (k,u) = \int _{k-1}^k \varphi (k,u) dv \le \int _{k-1}^k \varphi (v,u) dv. \end{aligned}$$

Taking the sum from \(k=2\) to \(k=N\), and then the limit when N goes to \(+\infty \), we have

$$\begin{aligned} \varphi (1,u)+\int _2^{+\infty }\varphi (v,u) dv \le \sum _{k=1}^{+\infty } \varphi (k,u) \le \varphi (1,u)+\int _1^{+\infty }\varphi (v,u) dv. \end{aligned}$$
(A.4)

Let us compute the integral on the right hand side, (which is well defined since for v in the neighbourhood of \(+\infty \), \(\varphi (v,u) = o(\frac{1}{v^p})\) for any \(p>1\)), that we expand as:

$$\begin{aligned} K&:=\int _1^{+\infty }\varphi (v,u) dv =\frac{1}{2} (K^+-K^-), \quad \text {where}\\ K^+&:= \int _1^{+\infty } v^3 \exp \left( -v^2\left[ \frac{c}{u}-c'\right] +v \frac{c}{u}\right) \, dv \quad \text {and }\\ K^-&:= \int _1^{+\infty } v^3 \exp \left( -v^2\left[ \frac{c}{u}-c'\right] -v \frac{c}{u}\right) \, dv. \end{aligned}$$

Writing \(\bar{\Phi }_j(x):= E[Z^j\mathbf {1}_{\{Z>x\}}]\), \(j \ge 0\) and \(\bar{\Phi }(x):=\bar{\Phi }_0(x)=P(Z>x)\), with Z a r.v. having a standard Gaussian distribution, we have

$$\begin{aligned} K^+&= \sqrt{2\pi }\frac{\exp \left( \frac{c^2}{4u^2[\frac{c}{u}-c']}\right) }{4[\frac{c}{u} -c']^2} \\&\quad \times \left[ \kappa _2^3\bar{\Phi }(\kappa _1-\kappa _2) +3\kappa _2^2\bar{\Phi }_1(\kappa _1-\kappa _2)+3\kappa _2\bar{\Phi }_2(\kappa _1-\kappa _2)+\bar{\Phi }_3(\kappa _1-\kappa _2)\right] , \end{aligned}$$

where \(\kappa _1(u):= \sqrt{2(\frac{c}{u}-c')}\) and \(\kappa _2(u):= \frac{c}{u\kappa _1(u)}\) (for simplicity, we do not indicate the dependence on u of \(\kappa _1\) and \(\kappa _2\) when there is no ambiguity). Similarly we have

$$\begin{aligned} K^-&= \sqrt{2\pi }\frac{\exp \left( \frac{c^2}{4u^2[\frac{c}{u}-c']}\right) }{4[\frac{c}{u} -c']^2} \\&\quad \times \left[ \bar{\Phi }_3(\kappa _1+\kappa _2) -3\kappa _2\bar{\Phi }_2(\kappa _1+\kappa _2)+3\kappa _2^2\bar{\Phi }_1(\kappa _1+\kappa _2)-\kappa _2^3 \bar{\Phi }(\kappa _1+\kappa _2)\right] . \end{aligned}$$

By an integration by parts,

$$\begin{aligned} \bar{\Phi }_3(x)= & {} \frac{1}{\sqrt{2\pi }}\exp \left( -\frac{x^2}{2}\right) (x^2+2)\\ \bar{\Phi }_2(x)= & {} \frac{x}{\sqrt{2\pi }}\exp \left( -\frac{x^2}{2}\right) +\bar{\Phi }(x)\\ \bar{\Phi }_1(x)= & {} \frac{1}{\sqrt{2\pi }}\exp \left( -\frac{x^2}{2}\right) , \quad \text {and it is standard that}\\ \bar{\Phi }(x)\sim & {} \frac{1}{x} \frac{1}{\sqrt{2\pi }}\exp \left( -\frac{x^2}{2}\right) . \end{aligned}$$

Using these explicit expressions, the value of \(\varphi (1,u)\) given through (A.3) and inequality (A.4), it is straightforward to show that \(u\log S(u)\) converge to 0 as u goes to \(0^+\). \(\square \)

Lemma A.5

For every \(x\in (0,T)\), \(t \in [0,x] \mapsto \overline{H}(t,x)\) is \(\mathcal C^1\).

Proof

Recall that (do a change of variable \(v=\frac{u-t}{T-t}\))

$$\begin{aligned} \overline{H}(t,x)&= \int _0^{T} \left\{ f(u,t,x) + \frac{1}{\sqrt{2\pi }(T-t)^{1/2}(u)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(T-t)u}\right) \right. \\&\quad \times \sum _{k=-\infty , k\ne 0}^{+\infty } \left( T-x-2k(T-t)\right) \exp \left( \frac{1-u}{u}\left[ -2k^2(T-t)\right. \right. \\&\quad \left. \left. \left. +2k(T-x)\right] \right) \right\} \, du.\\&=\int _0^{T} \Big \{ f(u,t,x)+g(t,x,u)\sum _{k=-\infty , k\ne 0}^{+\infty } h_k(t,x,u) \Big \}\, du, \end{aligned}$$

where

$$\begin{aligned} f(u,t,x) = \left\{ \begin{array}{ll} \frac{T-x}{\sqrt{2\pi }(T-t)^{1/2}(u)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(T-t)u}\right) &{} \text{ if } x<T \\ \mathbf {1}_{\{u=t\}} &{} \text{ if } x=T. \end{array} \right. \end{aligned}$$

Let \(x\in [0,T)\), \(t_0\le 0\) and \(\delta >0\) such that \(t_0+\delta \in [0,x)\).

  • For all \(t\in [0, t_0+\delta ]\)

    $$\begin{aligned} \left| \frac{\partial f}{\partial t} \right|&=\frac{T-x}{2\sqrt{2\pi }(T-t)^{3/2}(u)^{3/2}}\exp \left( -\frac{(T-x)^2}{2(T-t)u}\right) \\&\quad +\frac{(T-x)^3}{\sqrt{2\pi }(T-t)^{3/2}(u)^{5/2}}\exp \left( -\frac{(T-x)^2}{2(T-t)u}\right) \\&\le \frac{T-x}{2\sqrt{2\pi }(T-t_0-\delta )^{3/2}(u)^{3/2}}\exp \left( -\frac{(T-x)^2}{2Tu}\right) \\&\quad +\frac{(T-x)^3}{\sqrt{2\pi }(T-t_0-\delta )^{3/2}(u)^{5/2}}\exp \left( -\frac{(T-x)^2}{2Tu}\right) . \end{aligned}$$

    The right hand side is an integrable function on [0, 1] independent of \(t\in [0, t_0+\delta ]\). The function \(t\mapsto \frac{\partial f}{\partial t}\) is continuous on \([0, t_0+\delta ]\)

  • Note that \(g(t,x,u)=f(t,x,u)/(T-x)\). Hence the functions \(t\mapsto g(t,x,u)\) and \(t\mapsto \frac{\partial g}{\partial t}\) are continuous on \([0, t_0+\delta ]\) and can be bounded from above by a function independent of f and integrable w.r.t u.

  • Let us prove that the \(\sum _{k=-\infty , k\ne 0}^{+\infty } h_k(t,x,u) \) is a \(\mathcal C^1\) function. Since

    $$\begin{aligned}&\sup _{t\in [0,t_0+\delta ]}\left| \frac{\partial h_k(t,x,u)}{\partial t}\right| \\&\quad =\sup _{t\in [0,t_0+\delta ]}\left| 2k\exp \left( \frac{1-u}{u}\left[ -2k^2(T-t)+2k(T-x)\right] \right) \right. \\&\qquad + \left. 2k^2\frac{1-u}{u}(T-x-2k(T-t))\exp \left( \frac{1-u}{u}\left[ -2k^2(T-t)+2k(T-x)\right] \right) \right| \\&\quad \le 2|k|\exp \left( \frac{1-u}{u}\left[ -2k^2(T-t_0-\delta )+2k(T-x)\right] \right) \\&\qquad +2k^2\frac{1-u}{u}(T-x+2|k|T)\exp \left( \frac{1-u}{u}\left[ -2k^2(T-t_0-\delta )+2k(T-x)\right] \right) \\&\quad \le 2|k|\exp \left( \frac{1-u}{u}\left[ -2k^2(T-x)+2k(T-x)\right] \right) \\&\qquad +2k^2\frac{1-u}{u}(T-x+2|k|T)\exp \left( \frac{1-u}{u}\left[ -2k^2(T-x)+2k(T-x)\right] \right) , \end{aligned}$$

    which is the term of a convergent series, the result follows.

  • \(|\frac{\partial g(t,x,u)}{\partial t}\sum _{k=-\infty , k\ne 0}^{+\infty } h_k(t,x,u)|\le |\frac{\partial g(t,x,u)}{\partial t}|\), which is bounded from above by an integrable function independent of \(t\in [0, t_0+\delta ]\) (see above).

  • Define

    $$\begin{aligned} \widetilde{S}_n(u):= \sum _{k=1}^{+\infty } k^n \exp \left( -k^2c\left[ \frac{1-u}{u}\right] \right) \sinh \left( kc\frac{1-u}{u}\right) , \quad 0<u\le (T-t), \end{aligned}$$

    where \(c=(T-x)\), \(n=1,2,3\). Similar arguments as the ones used in the proof of Lemma A.4 imply that \(\lim _{u\rightarrow 0^+} u \log \widetilde{S}_n(u) = 0\). Then there exists \(\bar{u}\) such that for any \(u\le \bar{u}\)

    $$\begin{aligned} \left| g(t,x,u)\sum _{k=-\infty , k\ne 0}^{+\infty }\frac{\partial h_k(t,x,u)}{\partial t}\right| \le C\frac{1}{\sqrt{u}}, \end{aligned}$$

    where C is constant independent of u and t.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankirchner, S., Blanchet-Scalliet, C., Kazi-Tani, N. et al. Gambling for Resurrection and the Heat Equation on a Triangle. Appl Math Optim 84, 3111–3136 (2021). https://doi.org/10.1007/s00245-020-09741-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09741-9

Keywords

Mathematics Subject Classification

Navigation