Skip to main content
Log in

Longtime Behavior of Wave Equation with Kinetic Boundary Condition

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper, we consider a damped wave equation with mixed boundary conditions in a bounded domain. On one portion of the boundary, we have kinetic boundary condition: \(\partial _\nu y+m(x)y_{tt}-\Delta _{T} y=0\) with density function m(x), and on the other portion, we have homogeneous Neumann boundary condition: \(\partial _\nu y=0\). Based on the growth of the resolvent operator on the imaginary axis, solutions of the wave equations under consideration are proved to decay logarithmically. The proof of the resolvent estimation relies on the interpolation inequalities for an elliptic equation with Steklov type boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari, K., Hassine, F., Robbiano, L.: Stabilization for vibration plate with singular structural damping, arXiv:1905.13089

  2. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control and stabilization from the boundary. SIAM J. Control Optim. 30, 1024–165 (1992)

    Article  MathSciNet  Google Scholar 

  3. Batty, C.J.K., Duyckaerts, T.: Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8, 765–780 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bellassoued, M.: Decay of solutions of the elastic wave equation with a localized dissipation. Ann. Fac. Sci. Toulouse Math. 12, 267–301 (2003)

    Article  MathSciNet  Google Scholar 

  5. Buffe, R.: Stabilization of the wave equation with Ventcel boundary condition. J. Math. Pures Appl. 108, 207–259 (2007)

    Article  MathSciNet  Google Scholar 

  6. Burq, N., Hitrik, M.: Energy decay for damped wave equations on partially rectangular domains. Math. Res. Lett. 14, 35–47 (2007)

    Article  MathSciNet  Google Scholar 

  7. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Toundykov, D.: Stabilization of the damped wave equation with Cauchy Ventcel boundary conditions. J. Evol. Equ. 9, 143–169 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cavalcanti, M.M., Lasiecka, I., Toundykov, D.: Wave equation with damping affecting only a subset of static Wentzell boundary is uniform stable. Trans. Am. Math. Soc. 364, 5693–5713 (2012)

    Article  Google Scholar 

  9. Cornilleau, P., Robbiano, L.: Carleman estimates for the Zaremba boundary condition and stabilization of waves. Am. J. Math. 136, 393–444 (2014)

    Article  MathSciNet  Google Scholar 

  10. Fu, X.: Longtime behavior of the hyperbolic equations with an arbitrary internal damping. Z. Angew. Math. Phys. 62, 667–680 (2011)

    Article  MathSciNet  Google Scholar 

  11. Fu, X., Liu, X., Zhu, X.Z.: Logarithmic decay of wave equations with Cauchy–Ventcel boundary conditions. Control Theory Appl. 36, 1879–1885 (2019)

    MATH  Google Scholar 

  12. Fu, X., Lü, Q., Zhang, X.: Carleman estimates for second order partial differential operators an applications, a unified approach. Springer, New York (2019)

    Book  Google Scholar 

  13. Fursikov, A.V., Imanuvilov, OYu.: Controllability of Evolution Equations. Lecture Notes Series, vol. 34. Research Institute of Mathematics, Seoul National University, Seoul (1994)

    MATH  Google Scholar 

  14. Gal, C.G.: The role of surface diffusion in dynamic boundary conditions: where do we stand? Milan J. Math. 83, 237–278 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gal, C.G., Goldstein, G.R., Goldstein, J.A.: Oscillatory boundary conditions for acoustic wave equations. J. Evol. Equ. 3, 623–635 (2003)

    Article  MathSciNet  Google Scholar 

  16. Gal, C.G., Shomberg, J.L.: Coleman–Gurtin type equations with dynamic boundary conditions. Physica D 292–293, 29–45 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gal, C.G., Tebou, L.: Carleman inequalities for wave equations with oscillatory boundary conditions and application. SIAM J. Control Optim. 5, 324–364 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Goldstein, G.R.: Derivation and physical interpretation of general boundary conditions. Adv. Differ. Equ. 11, 457–480 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Heminna, A.: Stabilisation frontière de problèmes de Ventcel. ESAIM Control Optim. Calc. Var. 5, 591–622 (2000)

    Article  MathSciNet  Google Scholar 

  20. Komornik, V., Zuazua, E.: A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69, 33–54 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Lebeau, G.: Equation des ondes amorties. Algebraic and Geometric Methods in Mathematical Physics, pp. 73–109. Kluwer Acad. Publ., Dordrecht (1993)

    MATH  Google Scholar 

  22. Lebeau, G., Robbiano, L.: Stabilisation de l’équation des ondes par le bord. Duke Math. J. 86, 465–491 (1997)

    Article  MathSciNet  Google Scholar 

  23. Li, C., Xiao, T.J.: Polynomial stability for wave equations with Wentzell boundary conditions. J. Nonlinear Convex Anal. 18, 1801–1814 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Liu, Z., Rao, B.: Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56, 630–644 (2005)

    Article  MathSciNet  Google Scholar 

  25. Nédélec, J.C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Applied Mathematical Sciences, vol. 144. Springer, New York (2001)

    Book  Google Scholar 

  26. Nicaise, S., Laoubi, K.: Polynomial stabilization of the wave equation with Ventcel’s boundary conditions. New York Math. Nachr. 283, 1428–1438 (2010)

    Article  MathSciNet  Google Scholar 

  27. Phung, K.-D.: Polynomial decay rate for the dissipative wave equation. J. Differ. Equ. 240, 92–124 (2007)

    Article  MathSciNet  Google Scholar 

  28. Phung, K.-D., Zhang, X.: Time reversal focusing of the initial state for Kirchoff plate. SIAM J. Appl. Math. 68, 1535–1556 (2008)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Z., Guo, D.: Uniform stabilization of semilinear wave equations with localized internal damping and dynamical Wentzell boundary conditions with a memory term. Z. Angew. Math. Phys. 70, 160 (2019)

    Article  Google Scholar 

  30. Zhang, X., Zuazua, E.: Long time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Rat. Mech. Anal. 184, 49–120 (2007)

    Article  MathSciNet  Google Scholar 

  31. Zuazua, E.: Exponential decay for the semilinear wave equation with locally distributed damping. Communn. Partial Differ. Equ. 15, 205–235 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxia Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the NSF of China under Grants 11971333, 11931011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Kong, L. Longtime Behavior of Wave Equation with Kinetic Boundary Condition. Appl Math Optim 84, 2803–2817 (2021). https://doi.org/10.1007/s00245-020-09730-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09730-y

Keywords

Navigation