Skip to main content
Log in

Stabilization of the damped wave equation with Cauchy–Ventcel boundary conditions

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of uniform energy decay rates of solutions to the wave equation with Cauchy–Ventcel boundary conditions:

$$\left\{\begin{array}{l@{\qquad}l@{\quad}l} u_{tt}- \Delta u +a(x)g(u_t)=0 \quad {\rm in}\quad \Omega\;\times ] 0,\infty[\\ \partial_{\nu} u - \Delta_{\Gamma_1}u=0 \qquad \qquad \quad {\rm on}\quad \Gamma_{1}\times ] 0,\infty[\\ u=0\qquad \qquad \qquad \quad \qquad {\rm on} \quad\Gamma_{0}\times ] 0,\infty [\end{array}\right.$$

where Ω is a bounded domain of \({\mathbb{R}^{n}}\) (n ≥ 2) having a smooth boundary \({\Gamma :=\partial \Omega}\) , such that \({ \Gamma =\Gamma _{0} \cup \Gamma_{1}}\) with \({\Gamma_0}\) , \({\Gamma_1}\) being closed and disjoint. It is known that if a(x) = 0 then the uniform exponential stability never holds even if a linear frictional feedback is applied to the entire boundary of the domain [see, for instance, Hemmina (ESAIM, Control Optim Calc Var 5:591–622, 2000, Thm. 3.1)]. Let \({f:\overline{\Omega} \rightarrow \mathbb R}\) be a smooth function; define ω 1 to be a neighbourhood of \({\Gamma_1}\) , and subdivide the boundary \({\Gamma_0}\) into two parts: \({\Gamma_0^{\ast}=\{x\in \Gamma_0;\partial_{\nu}f > 0\}}\) and \({\Gamma_0 \backslash \Gamma_0^{\ast}}\) . Now, let ω 0 be a neighbourhood of \({\overline{\Gamma_0^{\ast}}}\) . We prove that if a(x) ≥ a 0 > 0 on the open subset \({\omega =\omega_0 \cup \omega_1}\) and if g is a monotone increasing function satisfying k|s| ≤ |g(s)| ≤ K|s| for all |s| ≥ 1, then the energy of the system decays uniformly at the rate quantified by the solution to a certain nonlinear ODE dependent on the damping [as in Lasiecka and Tataru (Differ Integral Equ 6:507–533, 1993)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aassila, M. M. Cavalcanti and V. N. Domingos Cavalcanti,Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term. Calc. Var. Partial Differential Equations 15 (2002), no. 2, 155–180.

  2. Alabau-Boussouira F.: Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51(1), 61–105 (2005)

    Article  MathSciNet  Google Scholar 

  3. V. Barbu, “Analysis and control of nonlinear infinite dimensional systems,” Academic Press, 1993.

  4. Bey R., Heminna A., Lohéac J.P.: Boundary stabilization of the linear elastodinamic system by a Lyapunov-type method. Revista Matemática Complutense 16(2), 417–441 (2003)

    MATH  Google Scholar 

  5. M. M. Cavalcanti, V. N. Domingos Cavalcanti, P. Martinez, General decay rate estimates for viscoelastic dissipative systems. Nonlinear Anal. 68 (2008), no. 1, 177–193.

    Google Scholar 

  6. Cavalcanti M., Domingos Cavalcanti V., Martinez P.: Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term. J. Differential Equations 203(1), 119–158 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. M. M. Cavalcanti, A. Khemmoudj and M. Medjden, Uniform stabilization of the damped Cauchy– Ventcel Problem with variable coefficients and dynamic boundary condition, J. Math. Anal. Appl,Volume 328, Issue 2, p. p. 900–930., 2007

    Google Scholar 

  8. M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42 (2003), no. 4, 1310–1324.

    Google Scholar 

  9. Cavalcanti M.M., Domingos Cavalcanti V.N., Lasiecka I.: Well posedness and optimal decay rates for wave equation with nonlinear boundary damping-source interaction. Journal of Differential Equations 236, 407–459 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka and J. A. Soriano, Uniform Stabilization of the wave equation on compact surfaces and locally distributed damping, Transactions of AMS (2008), (To appear).

  11. E. Feireisl and E. Zuazua, Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent, Comm. Partial Differential Equations 18 (1993), no. 9-10, 1539–1555.

  12. A. Hemmina, Stabilization frontière de problèmes de Ventcel. (Boundary stabilization of Ventcel problems), ESAIM, Control Optim. Calc. Var. 5, (2000), 591–622.

  13. Hemmina A.: Exact controllability of the linear elasticity system with evolutive Ventcel conditions. Port. Math. 58(3), 271–315 (2001)

    MathSciNet  Google Scholar 

  14. Hansen S., Zuazua E.: Controllability and stabilization of strings with point masses. SIAM J. Control and Optim. 33(5), 1357–1391 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Kanoune and N. Mehidi, Stabilization and control of subcritical semilinear wave equation in bounded domain with Cauchy–Ventcel boundary conditions, Appl. Math. Mech. -Engl. Ed. 29 (2008), pp. 787–800.

  16. H. Koch and E. Zuazua A hybrid system of PDEs arising in multi-structure interaction: coupling of wave equations in n and n−1 space dimension, in ‘Recent trends in Partial Differential Equations’, UIMP-RSME Santaló Summer School, July 12-16, 204, AMS-RSME, J. L. Vázquez et al. eds, Contemporary Mathematics 409, AMS, 2006, pp.53–77.

  17. W. Littman and S. W. Taylor, Boundary feedback stabilization of a vibrating string with an interior point mass. Nonlinear problems in mathematical physics and related topics, I, 271–287, Int. Math. Ser. (N. Y.), 1, Kluwer/Plenum, New York, 2002.

  18. Khemmoudj A., Medjden M.: Exponential Decay for the Semilinear Damped Cauchy–Ventcel Problem. Bol. Soc. Paran. Mat. 22(2), 97–116 (2004)

    MATH  MathSciNet  Google Scholar 

  19. K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier, CRAS Paris, t.300, Série I, n0 15, 1985, 531–534.

  20. K. Lemrabet, Etude de divers Problèmes aux limites de Ventcel d’origine physique ou mé canique dans des domaines non réguliers, Thèse, USTHB, Alger, (1987).

  21. Lembaret K., Teniou D. E.: Un problème d’évolution de type Ventcel. (an evolution problem of Ventcel type). Rev. Maghréb. Math. 1(1), 15–29 (1992)

    Google Scholar 

  22. Lasiecka I., Tataru D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differential and integral Equations 6, 507–533 (1993)

    MATH  MathSciNet  Google Scholar 

  23. Lasiecka I., Toundykov D.: Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms. Nonlinear Analysis 64, 1757–1797 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lasiecka I., Triggiani R.: Uniform stabilization of the wave equation with Derichlet or Neumann feedback control without geometric conditions. Appli. Math. Optim. 25, 189–124 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. I. Lasiecka, R. Triggiani, and P. F. Yao, Exact controllability for second-order hyperbolic equations with variable coefficients-principal part and first-order term Nonlinear Analysis Theory, Methods and Application 30 (1) (1997), 111–122. Proc. 2nd World Congress of Nonlinear Analysts.

  26. I. Lasiecka, R. Triggiani, and P. F. Yao, Inverse/Observability Estimates for Second-Ordre Hyperbolic Equations with Variable Coefficients.J. Math. Anal. Appl. 235 (1999), no. 1, 13–57.

    Google Scholar 

  27. I. Lasiecka, R. Triggiani, and X. Zhang, Nonconservative wave equations with unobserved Neumann B.C.: global uniqueness and observability in one shot, in “Differential Geometric Methods in the Control of Partial Differential Equations (Boulder, CO, 1999),” AMS, Providence, RI, 2000, pp. 227–325.

  28. J. L. Lions, Controlabilité exacte, perturbations et stabilisation de systèmes distribués, tome 1, Masson, 1988.

  29. Martinez P.: A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Mat. Complutense 12(1), 251–283 (1999)

    MATH  Google Scholar 

  30. P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM: Control, Optimization and Calculus of Variations, 4 (1999), pp 419–444.

  31. Nakao M.: Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305, 403–417 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nakao M.: Decay of solutions of the wave equation with local degenerate dissipation. Israel J. of Maths. 95, 25–42 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. L. R. Tcheugoué Tébou and E. Zuazua, Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95 (2003), no. 3, 563–598.

  34. D. Toundykov. Optimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponent source terms under mixed boundary conditions. Nonlinear Anal. 67 (2007), no. 2, 512–544.

    Google Scholar 

  35. Yao P.F.: On the observability inequality for exact controllability of wave equations with variable coefficients. SIAM J. Contro. Optim 37, 1568–1599 (1999)

    Article  MATH  Google Scholar 

  36. Zuazua E.: Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Partial Differential Equations 15(2), 205–235 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  37. E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains. J. Math. Pures Appl. (9) 70 (1991), no. 4, 513–529.

  38. Zuazua E.: Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control and Optimization 28, 466–478 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo M. Cavalcanti.

Additional information

Research of Marcelo M. Cavalcanti was partially supported by the CNPq Grant 300631/2003-0.

Research of Valéria N. Domingos Cavalcanti was partially supported by the CNPq Grant 304895/2003-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalcanti, M.M., Cavalcanti, V.N.D., Fukuoka, R. et al. Stabilization of the damped wave equation with Cauchy–Ventcel boundary conditions. J. Evol. Equ. 9, 143–169 (2009). https://doi.org/10.1007/s00028-009-0002-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-009-0002-1

Keywords

Navigation