Skip to main content
Log in

Wave equations with a damping term degenerating near low and high frequency regions

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

We consider wave equations with a nonlocal polynomial type of damping depending on a small parameter \(\theta \in (0,1)\). This research is a trial to consider a new type of dissipation mechanisms produced by a bounded linear operator for wave equations. These researches were initiated in a series of our previous works with various dissipations modeled by a logarithmic function published in (Charão et al. in Math Methods Appl Sci 44:14003-14024, 2021; Charão and Ikehata in Angew Math Phys 71:26, 2020; Piske et al. in J Diff Eqns 311:188-228, 2022). The model of dissipation considered in this work is probably the first defined by more than one sentence and it opens field to consider other more general. We obtain an asymptotic profile and optimal estimates in time of solutions as \(t \rightarrow \infty \) in \(L^{2}\)-sense, particularly, to the case \(0<\theta <1/ 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrera, J., Volkmer, H.: Asymptotic expansion of the \(L^{2}\)-norm of a solution of the strongly damped wave equation. J. Diff. Eqns. 267, 902–937 (2019)

    Article  ADS  Google Scholar 

  2. Barrera, J., Volkmer, H.: Asymptotic expansion of the \(L^{2}\)-norm of a solution of the strongly damped wave equation in space dimension \(1\) and \(2\). Asymptotic Anal. 121(3–4), 367–399 (2021)

    Article  MathSciNet  Google Scholar 

  3. Charão, R.C., D’Abbicco, M., Ikehata, R.: Asymptotic profile for a wave equation with parameter dependent logarithmic damping. Math. Methods Appl. Sci. 44(18), 14003–14024 (2021). https://doi.org/10.1002/mma.7671

    Article  ADS  MathSciNet  Google Scholar 

  4. Charão, R.C., Espinoza, J.T., Ikehata, R.: A second order fractional differential equation under effects of a super damping. Comm. Pure Appl. Analysis 19(9), 4433–4454 (2020). https://doi.org/10.3934/cpaa.2020202

    Article  MathSciNet  Google Scholar 

  5. Charão, R.C., Ikehata, R.: Asymptotic profile and optimal decay of solutions of some wave equations with logarithmic damping, Z. Angew. Math. Phys. 71, 5, 26 (2020) https://doi.org/10.1007/s00033-020-01373-x

  6. Charão, R.C., da Luz, C.L., Ikehata, R.: Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space. J. Math. Anal. Appl. 408, 247–255 (2013)

    Article  MathSciNet  Google Scholar 

  7. Charão, R.C., Piske, A., Ikehata, R.: A dissipative logarithmic type evolution equation: asymptotic profile and optimal estimates. J. Math. Anal. Appl. 506, 125587 (2022). https://doi.org/10.1016/j.jmaa.2021.125587

    Article  MathSciNet  Google Scholar 

  8. Chen, W., D’Abbicco, M., Girardi, G.: Global small data solutions for semilinear waves with two dissipative terms, Annali di Math. Pura ed Appl. (1923) 201:529-560 (2022)

  9. Chen, W., Ikehata, R.: Decay properties and asymptotic behaviors for a wave equation with general strong damping. J. Math. Anal. Appl. 519, 126765 (2023). https://doi.org/10.1016/j.jmaa.2022.126765

    Article  MathSciNet  Google Scholar 

  10. Chill, R., Haraux, A.: An optimal estimate for the difference of solutions of two abstract evolution equations. J. Diff. Eqns. 193, 385–395 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. D’Abbicco, M., Ebert, M.R.: Diffusion phenomena for the wave equation with structural damping in the \(L^{p}\)-\(L^{q}\) framework. J. Diff. Eqns. 256, 2307–2336 (2014)

    Article  Google Scholar 

  12. D’Abbicco, M., Ebert, M.R.: An application of \(L^{p}\)-\(L^{q}\) decay estimates to the semi-linear wave equation with parabolic-like structural damping. Nonlinear Anal. 99, 16–34 (2014)

    Article  MathSciNet  Google Scholar 

  13. D’Abbicco, M., Ebert, M.R.: A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations. Nonlinear Anal. 149, 1–40 (2017)

    Article  MathSciNet  Google Scholar 

  14. D’Abbicco, M., Reissig, M.: Semilinear structural damped waves. Math. Methods Appl. Sci. 37, 1570–1592 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dao, T.A., Reissig, M.: An application of \(L^{1}\) estimates for oscillating integrals to parabolic-like semi-linear structurally damped \(\sigma \)-models. J. Math. Anal. Appl. 476, 426–463 (2019)

    Article  MathSciNet  Google Scholar 

  16. Fukushima, T., Ikehata, R., Michihisa, H.: Asymptotic profiles for damped plate equations with rotational inertia terms. J. Hyperbolic Differ. Eqns. 17, 569–589 (2020)

    Article  MathSciNet  Google Scholar 

  17. Fukushima, T., Ikehata, R., Michihisa, H.: Thresholds for low regularity solutions to wave equations with structural damping. J. Math. Anal. Appl. 494, 124669 (2021)

    Article  MathSciNet  Google Scholar 

  18. Fujiwara, K., Ikeda, M., Wakasugi, Y.: On the Cauchy problem for a class of semilinear second order evolution equations with fractional Laplacian and damping. Nonlinear Differ. Eqns. Appl. 28, 63 (2021). https://doi.org/10.1007/s00030-021-00723-6

    Article  MathSciNet  Google Scholar 

  19. Hosono, T., Kawashima, S.: Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system. Math. Models Methods Appl. Sci. 16(11), 1839–1859 (2006)

    Article  MathSciNet  Google Scholar 

  20. Ide, K., Haramoto, K., Kawashima, S.: Decay property of regularity-loss type for dissipative Timoshenko system. Math. Models Methods Appl. Sci. 18(5), 647–667 (2008)

    Article  MathSciNet  Google Scholar 

  21. Ikehata, R.: New decay estimates for linear damped wave equations and its application to nonlinear problem. Math. Meth. Appl. Sci. 27, 865–889 (2004). https://doi.org/10.1002/mma.476

    Article  MathSciNet  Google Scholar 

  22. Ikehata, R.: Asymptotic profiles for wave equations with strong damping. J. Diff. Eqns. 257, 2159–2177 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ikehata, R., Iyota, S.: Asymptotic profile of solutions for some wave equations with very strong structural damping. Math. Methods Appl. Sci. 41, 5074–5090 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Ikehata, R., Onodera, M.: Remark on large time behavior of the \(L^{2}\)-norm of solutions to strongly damped wave equations. Diff. Int. Eqns. 30, 505–520 (2017)

    Google Scholar 

  25. Ikehata, R., Takeda, H.: Asymptotic profiles of solutions for structural damped wave equations. J. Dyn. Diff. Eqns. 31, 537–571 (2019). https://doi.org/10.1007/s10884-019-09731-8

    Article  MathSciNet  Google Scholar 

  26. Ikehata, R., Todorova, G., Yordanov, B.: Wave equations with strong damping in Hilbert spaces. J. Diff. Eqns. 254, 3352–3368 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Karch, G.: Selfsimilar profiles in large time asymptotics of solutions to damped wave equations. Studia Math. 143, 175–197 (2000)

    Article  MathSciNet  Google Scholar 

  28. Michihisa, H.: Optimal leading term of solutions to wave equations with strong damping terms. Hokkaido Math. J. 50, 165–186 (2021). https://doi.org/10.14492/hokmj/2018-920

    Article  MathSciNet  Google Scholar 

  29. Narazaki, T., Reissig, M.: \(L^1\) estimates for oscillating integrals related to structural damped wave models, Studies in phase space analysis with applications to PDEs, 215-258, Progr. Nonlinear Differential Equations Appl. 84, Birkhäuser/Springer, New York, (2013)

  30. Pham, D.T., Mezadek, M.K., Reissig, M.: Global existence for semi-linear structurally damped \(\sigma \)-evolution models. J. Math. Anal. Appl. 431, 569–596 (2015)

    Article  MathSciNet  Google Scholar 

  31. Piske, A., Charão, R.C., Ikehata, R.: Double diffusion structure of logarithmically damped wave equations with small parameter. J. Diff. Eqns. 311, 188–228 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ponce, G.: Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. 9, 399–418 (1985)

    Article  MathSciNet  Google Scholar 

  33. Shibata, Y.: On the rate of decay of solutions to linear viscoelastic equation. Math. Meth. Appl. Sci. 23, 203–226 (2000)

    Article  MathSciNet  Google Scholar 

  34. Yamazaki, T.: Asymptotic profile of solutions for semilinear wave equations with structural damping, NoDEA Nonlinear Differ. Eqns Appl. 26, 3, 43 (2019)

Download references

Acknowledgements

The authors thank the reviewers for their careful reading and valuable advice. The work of the first author (R. C. CHARÃO) was partially supported by PRINT/CAPES- Process 88881.310536/2018-00. The work of the second author (R. IKEHATA) was supported in part by Grant-in-Aid for Scientific Research (C) 20K03682 of JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruy Coimbra Charão.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charão, R.C., Ikehata, R. Wave equations with a damping term degenerating near low and high frequency regions. J. Pseudo-Differ. Oper. Appl. 15, 19 (2024). https://doi.org/10.1007/s11868-024-00589-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-024-00589-z

Keywords

Mathematics Subject Classification

Navigation