Skip to main content
Log in

Local Null-Controllability of a Nonlocal Semilinear Heat Equation

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

This paper deals with the problem of internal null-controllability of a heat equation posed on a bounded domain with Dirichlet boundary conditions and perturbed by a semilinear nonlocal term. We prove the small-time local null-controllability of the equation. The proof relies on two main arguments. First, we establish the small-time local null-controllability of a \(2 \times 2\) reaction-diffusion system, where the second equation is governed by the parabolic operator \(\tau \partial _t - \sigma \varDelta \), \(\tau , \sigma > 0\). More precisely, this controllability result is obtained uniformly with respect to the parameters \((\tau , \sigma ) \in (0,1) \times (1, + \infty )\). Secondly, we observe that the semilinear nonlocal heat equation is actually the asymptotic derivation of the reaction-diffusion system in the limit \((\tau ,\sigma ) \rightarrow (0,+\infty )\). Finally, we illustrate these results by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ammar-Khodja, F., Benabdallah, A., González-Burgos, M., de Teresa, L.: Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1(3), 267–306 (2011)

    Article  MathSciNet  Google Scholar 

  2. Barbu, V.: Exact controllability of the superlinear heat equation. Appl. Math. Optim. 42(1), 73–89 (2000)

    Article  MathSciNet  Google Scholar 

  3. Biccari, U., Hernández-Santamaría, V.: Null controllability of linear and semilinear nonlocal heat equations with an additive integral kernel. SIAM J. Control Optim. 57(4), 2924–2938 (2019)

    Article  MathSciNet  Google Scholar 

  4. Boyer, F.: On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems. In: CANUM 2012, 41e Congrès National d’Analyse Numérique volume 41 of ESAIM Proc., pp. 15–58. EDP Sci., Les Ulis (2013)

  5. Chaves-Silva, F.W., Guerrero, S., Puel, J.P.: Controllability of fast diffusion coupled parabolic systems. Math. Control Relat. Fields 4(4), 465–479 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chaves-Silva, F.W., Bendahmane, M.: Uniform null controllability for a degenerating reaction-diffusion system approximating a simplified cardiac model. SIAM J. Control Optim. 53(6), 3483–3502 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chaves-Silva, F.W., Guerrero, S.: A uniform controllability result for the Keller-Segel system. Asymp. Anal. 92(3–4), 313–338 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Clark, H.R., Fernández-Cara, E., Limaco, J., Medeiros, L.A.: Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities. Appl. Math. Comput. 223, 483–505 (2013)

    MathSciNet  MATH  Google Scholar 

  9. de Teresa, L.: Insensitizing controls for a semilinear heat equation. Commun. Part. Differ. Equ. 25(1–2), 39–72 (2000)

    Article  MathSciNet  Google Scholar 

  10. Ekeland, I., Témam, R.: Convex analysis and variational problems, volume 28 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, english edition (1999). Translated from the French

  11. Evans, L.C.: Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  12. Fernández-Cara, E., Guerrero, S.: Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45(4), 1399–1446 (2006)

    Article  MathSciNet  Google Scholar 

  13. Fernández-Cara, E., Zuazua, E.: Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(5), 583–616 (2000)

    Article  MathSciNet  Google Scholar 

  14. Fernández-Cara, E., González-Burgos, M., Guerrero, S., Puel, J.-P.: Null controllability of the heat equation with boundary Fourier conditions: the linear case. ESAIM Control Optim. Calc. Var. 12(3), 442–465 (2006)

    Article  MathSciNet  Google Scholar 

  15. Fernández-Cara, E., Limaco, J., de Menezes, S.B.: Null controllability for a parabolic equation with nonlocal nonlinearities. Syst. Control Lett. 61(1), 107–111 (2012)

    Article  MathSciNet  Google Scholar 

  16. Fernández-Cara, E., Lü, Q., Zuazua, E.: Null controllability of linear heat and wave equations with nonlocal spatial terms. SIAM J. Control Optim. 54(4), 2009–2019 (2016)

    Article  MathSciNet  Google Scholar 

  17. Fernández-Cara, E., Límaco, J., Nina-Huaman, D., Núñez Chávez, M.R.: Exact controllability to the trajectories for parabolic PDEs with nonlocal nonlinearities. Math. Control Signals Syst. 31(3), 415–431 (2019)

    Article  MathSciNet  Google Scholar 

  18. Fursikov, A.V., Imanuvilov, O Y.: Controllability of Evolution Equations, Volume 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996)

  19. González-Burgos, M., de Teresa, L.: Controllability results for cascade systems of \(m\) coupled parabolic PDEs by one control force. Port. Math. 67(1), 91–113 (2010)

    Article  MathSciNet  Google Scholar 

  20. Hernández-Santamaría, V., Zuazua, E.: Controllability of shadow reaction-diffusion systems. J. Differ. Equ. 268(7), 3781–3818 (2020)

    Article  MathSciNet  Google Scholar 

  21. Hilhorst, D., Rodrigues, J.-F.: On a nonlocal diffusion equation with discontinuous reaction. Adv. Differ. Equ. 5(4–6), 657–680 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Kavallaris, N.I., Suzuki, T.: Non-local Partial Differential Equations for Engineering and Biology, Volume 31 of Mathematics for Industry (Tokyo). Mathematical Modeling and Analysis. Springer, Cham (2018)

    MATH  Google Scholar 

  23. Kokotović, P., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control, Volume 25 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (1999). Analysis and design, Corrected reprint of the 1986 original

  24. Le Balc’h, K.: Controllability of nonlinear reaction-diffusion sytems. Theses, École normale supérieure de Rennes (2019)

  25. Le Balc’h, K.: Global null-controllability and nonnegative-controllability of slightly superlinear heat equations. J. de Math. Pures et Appl. 135, 103–139 (2020)

    Article  MathSciNet  Google Scholar 

  26. Lebeau, G., Robbiano, L.: Contrôle exact de l’équation de la chaleur. Commun. Part. l Differ. Equ. 20(1–2), 335–356 (1995)

    Article  Google Scholar 

  27. Lissy, P., Zuazua, E.: Internal controllability for parabolic systems involving analytic non-local terms. Chin. Ann. Math. Ser. B 39(2), 281–296 (2018)

    Article  MathSciNet  Google Scholar 

  28. Liu, Y., Takahashi, T., Tucsnak, M.: Single input controllability of a simplified fluid-structure interaction model. ESAIM Control Optim. Calc. Var. 19(1), 20–42 (2013)

    Article  MathSciNet  Google Scholar 

  29. Lohéac, J., Trélat, E., Zuazua, E.: Minimal controllability time for the heat equation under unilateral state or control constraints. Math. Models Methods Appl. Sci. 27(9), 1587–1644 (2017)

    Article  MathSciNet  Google Scholar 

  30. Micu, S., Takahashi, T.: Local controllability to stationary trajectories of a Burgers equation with nonlocal viscosity. J. Differ. Equ. 264(5), 3664–3703 (2018)

    Article  MathSciNet  Google Scholar 

  31. Montoya, C., de Teresa, L.: Robust Stackelberg controllability for the Navier-Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 25(5), 46 (2018)

    Article  MathSciNet  Google Scholar 

  32. Perthame, B.: Parabolic equations in biology. Lecture Notes on Mathematical Modelling in the Life Sciences. Growth, reaction, movement and diffusion. Springer, Cham (2015)

  33. Rodrigues, J.-F.: Reaction-diffusion: from systems to nonlocal equations in a class of free boundary problems. Number 1249. 2002. In: International Conference on Reaction-Diffusion Systems: Theory and Applications, pp. 72–89. Kyoto (2001)

  34. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mater. Pura Appl. 4(146), 65–96 (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

Both authors benefited from the fruitful atmosphere of the conference Partial Differential Equations, Optimal Design and Numerics held at Centro de Ciencias de Benasque “Pedro Pascual” in August, 2019, where this work began. The funding was provided by Cluster System of Bordeaux.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kévin Le Balc’h.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant No. 694126-DyCon). The work of the first author was partially supported by the Labex CIMI (Centre International de Mathématiques et d’Informatique), ANR-11-LABX-0040-CIMI. The work of the second author has been supported by the SysNum cluster of excellence University of Bordeaux.

Appendices

Energy Estimates for the Reaction-Diffusion System

In this section, we recall some classical energy estimates for the system (9), assuming \((a,b,c,d) \in \mathbb {R}^2 \times \mathbb {R}^{*} \times (-\infty ,0)\). More precisely, we consider for \(F \in L^2((0,T)\times \varOmega )\),

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle \partial _t u- \varDelta u = a u +b v + F&{}\mathrm {in}\ (0,T)\times \varOmega ,\\ \tau \partial _t v - \sigma \varDelta v = u-v &{}\mathrm {in}\ (0,T)\times \varOmega ,\\ \displaystyle u = \frac{\partial v}{\partial n}= 0,\ &{}\mathrm {on}\ (0,T)\times \partial \varOmega ,\\ (u,v)(0,\cdot )=(u_0,v_0)&{} \mathrm {in}\ \varOmega . \end{array}\right. } \end{aligned}$$
(118)

We have the following well-posedness result in \(L^2\).

Proposition 7

There exists a positive constant \(C = C(\varOmega ,T)=\exp (C(\varOmega )T)>0\) such that for every \((u_0,v_0) \in L^2(\varOmega )^2\), \(F \in L^2((0,T)\times \varOmega )\), the solution (uv) to (118) satisfies

$$\begin{aligned}&\left\Vert u\right\Vert _{C([0,T];L^2(\varOmega ))} + \left\Vert u\right\Vert _{L^2(0,T;H_0^1(\varOmega ))} + \left\Vert \partial _t u\right\Vert _{L^2(0,T;H^{-1}(\varOmega ))} \nonumber \\&\qquad + \sqrt{\tau } \left\Vert v\right\Vert _{C([0,T];L^2(\varOmega ))} + \left\Vert v\right\Vert _{L^2(0,T;H^1(\varOmega ))} + \sqrt{\tau } \left\Vert \partial _t v\right\Vert _{L^2(0,T;H^1(\varOmega )')}\nonumber \\&\quad \le C\left( \left\Vert u_0\right\Vert _{L^2(\varOmega )} + \sqrt{\tau } \left\Vert v_0\right\Vert _{L^2(\varOmega )} + \left\Vert F\right\Vert _{L^2((0,T)\times \varOmega )}\right) . \end{aligned}$$
(119)

Proof

We just give the sketch of the proof because it is standard, see [11, Sect. 7.1.2] for the details. We only give a priori estimates. We multiply the first equation of (118) by u and the second equation of (118) by v, then integrate in \(Q_t=(0,t)\times \varOmega \),

$$\begin{aligned} \frac{1}{2} \int _{\varOmega } u(t)^2 + \int _{Q_t} |\nabla u|^2&= \frac{1}{2} \int _{\varOmega } u_0^2 + \int _{Q_t} F u + \int _{Q_t} a u^2 + \int _{Q_t} b uv,\\ \frac{\tau }{2} \int _{\varOmega } v(t)^2 + \sigma \int _{Q_t} |\nabla v|^2 + \int _{Q_t} v^2&= \frac{\tau }{2} \int _{\varOmega } v_0^2 + \int _{Q_t} uv. \end{aligned}$$

We use Young’s inequalities in the previous equations to obtain

$$\begin{aligned} \frac{1}{2} \int _{\varOmega } u(t)^2 + \int _{Q_t} |\nabla u|^2&\le C \left( \int _{\varOmega } u_0^2 + \int _{Q_t} F^2 + \int _{Q_t} u^2 + \int _{Q_t} v^2 \right) , \end{aligned}$$
(120)
$$\begin{aligned} \frac{\tau }{2} \int _{\varOmega } v(t)^2 + \sigma \int _{Q_t} |\nabla v|^2 + \frac{1}{2} \int _{Q_t} v^2&\le \frac{\tau }{2} \int _{\varOmega } v_0^2 +\,\frac{1}{2} \int _{Q_t} u^2 . \end{aligned}$$
(121)

We put (121) in (120) and use Gronwall’s estimate

$$\begin{aligned} \int _{\varOmega } u(t)^2 + \int _{Q_t} |\nabla u|^2 \le C \left( \int _{\varOmega } u_0^2 + \tau \int _{\varOmega } v_0^2 + \int _{Q_t} F^2\right) . \end{aligned}$$
(122)

Then, we use this previous bound in (121) to get

$$\begin{aligned} \tau \int _{\varOmega } v(t)^2 + \sigma \int _{Q_t} |\nabla v|^2 + \int _{Q_t} v^2 \le C \left( \int _{\varOmega } u_0^2 + \tau \int _{\varOmega } v_0^2 + \int _{Q_t} F^2\right) . \end{aligned}$$
(123)

By taking the supremum for \(t \in [0,T]\) in (122) and (123), we obtain the conclusion of the proof. \(\square \)

We have the following maximal regularity estimate in \(L^2\).

Proposition 8

There exists a positive constant \(C = C(\varOmega ,T)=\exp (C(\varOmega )T)>0\) such that for every \((u_0,v_0) \in H_0^1(\varOmega )\times H^1(\varOmega )\), \(F \in L^2((0,T)\times \varOmega )\), the solution (uv) to (118) satisfies

$$\begin{aligned}&\left\Vert u\right\Vert _{C([0,T];H_0^1(\varOmega ))} + \left\Vert u\right\Vert _{L^2(0,T;H^2(\varOmega ))} + \left\Vert \partial _t u\right\Vert _{L^2(0,T;L^2(\varOmega ))} \nonumber \\&\quad + \sqrt{\tau } \left\Vert v\right\Vert _{C([0,T];H^1(\varOmega ))} + \left\Vert v\right\Vert _{L^2(0,T;H^2(\varOmega ))} + \sqrt{\tau } \left\Vert \partial _t v\right\Vert _{L^2(0,T;L^2(\varOmega ))} \nonumber \\&\qquad \le C\left( \left\Vert u_0\right\Vert _{H^1(\varOmega )} + \sqrt{\tau } \left\Vert v_0\right\Vert _{H^1(\varOmega )}\right) . \end{aligned}$$
(124)

Proof

It is a straightforward adaptation of the proof of [11, Sect. 7.1.3, Theorem 5], just by multiplying the first equation by \(-\varDelta u\) and the second equation by \(-\varDelta v\). \(\square \)

Proof of the Source Term Method

In this section, we give the proof of Proposition 3.

Proof

For \(k \ge 0\), we define \(T_k := T(1-q^{-k})\) where \(q \in (1, \sqrt{2})\). On the one hand, let \(a_0 := (u_0,\sqrt{\tau } v_0)\) and, for \(k \ge 0\), we define \(a_{k+1} := (u_S,\sqrt{\tau } v_S)(T_{k+1}^{-},.)\) where \((u_S,v_S)\) is the solution to

$$\begin{aligned} \left\{ \begin{array}{l l} \partial _t u_{S} - \varDelta u_{S} = a u_S + b v_S + S&{}\mathrm {in}\ (T_k,T_{k+1})\times \varOmega ,\\ \tau \partial _t v_{S} - \sigma \varDelta v_{S} = c u_S + d v_S&{}\mathrm {in}\ (T_k,T_{k+1})\times \varOmega ,\\ u_{S}= \frac{\partial v_{S}}{\partial n } = 0 &{}\mathrm {on}\ (T_k,T_{k+1})\times \partial \varOmega ,\\ (u,v)_{S}(T_k^{+},.)=0 &{}\mathrm {in}\ \varOmega . \end{array} \right. \end{aligned}$$

From classical energy estimates, see Proposition 7, we have

$$\begin{aligned} \left\Vert a_{k+1}\right\Vert _{L^{2}(\varOmega )^2} \le \left\Vert (u_S, \sqrt{\tau } v_S)\right\Vert _{C([T_k,T_{k+1}];L^{2}(\varOmega )^2)} \le C\left\Vert S\right\Vert _{L^{2}((T_k,T_{k+1});L^{2}(\varOmega ))}. \end{aligned}$$
(125)

On the other hand, for \(k \ge 0\), we also consider the control systems

$$\begin{aligned} \left\{ \begin{array}{l l} \partial _t u_{h} - \varDelta u_{h} = a u_h + b v_h + h 1_{\omega } &{}\mathrm {in}\ (T_k,T_{k+1})\times \varOmega ,\\ \tau \partial _t v_{h} - \sigma \varDelta v_{h} = c u_h + d v_h&{}\mathrm {in}\ (T_k,T_{k+1})\times \varOmega ,\\ u_{S}= \frac{\partial v_{h}}{\partial n } = 0 &{}\mathrm {on}\ (T_k,T_{k+1})\times \partial \varOmega ,\\ (u_h,\sqrt{\tau } v_h)(T_k^{+},.)= a_k &{}\mathrm {in}\ \varOmega . \end{array} \right. \end{aligned}$$

From the null-controllability result, we deduce that we can define \(h_k \in L^2((T_k, T_{k+1})\times \varOmega )\) such that \((u_S,v_S)(T_{k+1}^{-},\cdot ) = 0\) and thanks to the (precise) cost estimate,

$$\begin{aligned} \left\Vert h_k\right\Vert _{ L^{2}((T_k,T_{k+1})\times \varOmega )} \le M e^{\frac{M}{T_{k+1}-T_{k}}} \left\Vert a_k\right\Vert _{L^2(\varOmega )^2}. \end{aligned}$$
(126)

In particular, for \(k=0\), we have

$$\begin{aligned} \left\Vert h_0\right\Vert _{ L^{2}((T_0,T_{1})\times \varOmega )} \le M e^{\frac{qM}{T(q-1)}} \left\Vert a_0\right\Vert _{L^2(\varOmega )^2}. \end{aligned}$$

And, since \(\rho _0\) is decreasing

$$\begin{aligned} \left\Vert h_0/\rho _0\right\Vert _{L^{2}((T_0,T_{1})\times \varOmega )} \le \rho _0^{-1}(T_1) M e^{\frac{qM}{T(q-1)}} \left\Vert a_0\right\Vert _{L^2(\varOmega )^2}. \end{aligned}$$
(127)

For \(k \ge 0\), since \(\rho _{{\mathcal {S}}}\) is decreasing, combining (125) and (126) yields

$$\begin{aligned} \left\Vert h_{k+1}\right\Vert _{L^{2}((T_{k+1},T_{k+2})\times \varOmega )} \le C M e^{\frac{M}{T_{k+2}-T_{k+1}}} \rho _{{\mathcal {S}}}(T_k) \left\Vert S/\rho _{{\mathcal {S}}}\right\Vert _{L^{2}((T_{k},T_{k+1})\times \varOmega )}. \end{aligned}$$
(128)

In particular, by using \(M e^{\frac{M}{T_{k+2}-T_{k+1}}} \rho _{{\mathcal {S}}}(T_k) = \rho _0(T_{k+2})\) coming from the definitions (74) and (75), we have

$$\begin{aligned} \left\Vert h_{k+1}\right\Vert _{L^{2}((T_{k+1},T_{k+2})\times \varOmega )}&\le C \rho _0(T_{k+2}) \left\Vert S/\rho _{{\mathcal {S}}}\right\Vert _{L^{2}((T_{k},T_{k+1})\times \varOmega )}. \end{aligned}$$
(129)

Then, from (129), by using the fact that \(\rho _0\) is decreasing,

$$\begin{aligned} \left\Vert h_{k+1}/\rho _0\right\Vert _{L^{2}((T_{k+1},T_{k+2})\times \varOmega )} \le C \left\Vert S/\rho _{{\mathcal {S}}}\right\Vert _{L^{2}((T_{k},T_{k+1})\times \varOmega )}. \end{aligned}$$
(130)

As in the original proof, we can paste the controls \(h_{k}\) for \(k \ge 0\) together by defining

$$\begin{aligned} h := \sum \limits _{k \ge 0} h_k 1_{(T_k,T_{k+1})}. \end{aligned}$$

We have the estimate from (127) and (130)

$$\begin{aligned} \left\Vert h\right\Vert _{{\mathcal {H}}} \le C \left\Vert S\right\Vert _{{\mathcal {S}}} + C \rho _0^{-1}(T_1) M e^{\frac{qM}{T(q-1)}} \left\Vert a_0\right\Vert _{L^2(\varOmega )^2}. \end{aligned}$$

The state (uv) can also be reconstructed by concatenation of \((u_S,v_S)\) + \((u_h,v_h)\), which are continuous at each junction \(T_k\) thanks to the construction. Then, we estimate the state. We use the energy estimate on each time interval \((T_k, T_{k+1})\):

$$\begin{aligned} \left\Vert (u_S, \sqrt{\tau } v_S)\right\Vert _{L^{\infty }(T_k,T_{k+1};L^2(\varOmega )^2)} \le C \left\Vert S\right\Vert _{L^2((T_k,T_{k+1})\times \varOmega )}, \end{aligned}$$

and

$$\begin{aligned} \left\Vert (u_h,\sqrt{\tau } v_h)\right\Vert _{L^{\infty }(T_k,T_{k+1};L^2(\varOmega )^2)} \le C\left( \left\Vert a_k\right\Vert _{L^{2}(\varOmega )} + \left\Vert h\right\Vert _{L^{2}((T_k,T_{k+1})\times \varOmega )}\right) . \end{aligned}$$

Proceeding similarly as for the estimate on the control, we obtain respectively

$$\begin{aligned} \left\Vert (u_S, \sqrt{\tau } v_S)/\rho _0\right\Vert _{L^{\infty }(T_k,T_{k+1};L^2(\varOmega )^2)} \le C M^{-1} \left\Vert S\right\Vert _{{\mathcal {S}}}, \end{aligned}$$

and

$$\begin{aligned}&\left\Vert (u_h, \sqrt{\tau } v_h)/\rho _0\right\Vert _{L^{\infty }(T_k,T_{k+1};L^2(\varOmega )^2)} \\&\quad \le C M^{-1} \left\Vert S\right\Vert _{{\mathcal {S}}} + C \rho _0^{-1}(T_1) M e^{\frac{qM}{T(q-1)}} \left\Vert (u_0, \sqrt{\tau } v_0)\right\Vert _{L^{2}(\varOmega )^2}. \end{aligned}$$

Therefore, for an appropriate choice of constant \(C >0\), (uv) and h satisfy (80). This concludes the proof of Proposition 3. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Santamaría, V., Le Balc’h, K. Local Null-Controllability of a Nonlocal Semilinear Heat Equation. Appl Math Optim 84, 1435–1483 (2021). https://doi.org/10.1007/s00245-020-09683-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09683-2

Keywords

Mathematics Subject Classification

Navigation