Journal of Molecular Evolution

, Volume 66, Issue 2, pp 167–174 | Cite as

Slow Mitochondrial COI Sequence Evolution at the Base of the Metazoan Tree and Its Implications for DNA Barcoding

  • Danwei HuangEmail author
  • Rudolf Meier
  • Peter A. Todd
  • Loke Ming Chou


The evolution rates of mtDNA in early metazoans hold important implications for DNA barcoding. Here, we present a comprehensive analysis of intra- and interspecific COI variabilities in Porifera and Cnidaria (separately as Anthozoa, Hydrozoa, and Scyphozoa) using a data set of 619 sequences from 224 species. We found variation within and between species to be much lower in Porifera and Anthozoa compared to Medusozoa (Hydrozoa and Scyphozoa), which has divergences similar to typical metazoans. Given that recent evidence has shown that fungi also exhibit limited COI divergence, slow-evolving mtDNA is likely to be plesiomorphic for the Metazoa. Higher rates of evolution could have originated independently in Medusozoa and Bilateria or been acquired in the Cnidaria + Bilateria clade and lost in the Anthozoa. Low identification success and substantial overlap between intra- and interspecific COI distances render the Anthozoa unsuitable for DNA barcoding. Caution is also advised for Porifera and Hydrozoa because of relatively low identification success rates as even threshold divergence that maximizes the “barcoding gap” does not improve identification success.


Interspecific Variability Interspecific Distance Intraspecific Distance Taxon Coverage Identification Success Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Guanyang Zhang for initial discussion and comments, as well as Gaurav Vaidya for customization of TaxonDNA for our use. Hironobu Fukami provided valuable advice on DNA extraction and PCR. We appreciate the help and support of members of the Evolutionary Biology and Marine Biology laboratories, National University of Singapore.

Supplementary material


  1. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522Google Scholar
  2. Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491CrossRefGoogle Scholar
  3. Borchiellini C, Manuel M, Alivon E, Boury-Esnault N, Vacelet J, Le Parco Y (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14:171–179CrossRefGoogle Scholar
  4. Boscolo HK, Silveira FL (2005) Reproductive biology of Palythoa caribaeorum and Protopalythoa variabilis (Cnidaria, Anthozoa, Zoanthidea) from the southeastern coast of Brazil. Brazil J Biol 65:29–41Google Scholar
  5. Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW (1992) Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc Natl Acad Sci USA 89:8750–8753PubMedCrossRefGoogle Scholar
  6. Brown WM (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer Associates, Sunderland, MA, pp 147–164Google Scholar
  7. Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci 76:1967–1971PubMedCrossRefGoogle Scholar
  8. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239PubMedCrossRefGoogle Scholar
  9. Calderón I, Garrabou J, Aurelle D (2006) Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. J Exp Mar Biol Ecol 336:184–197CrossRefGoogle Scholar
  10. Dawid IB (1972) Evolution of mitochondrial DNA in Xenopus. Dev Biol 29:139–151PubMedCrossRefGoogle Scholar
  11. Dawson MN (2005) Cyanea capillata is not a cosmopolitan jellyfish: morphological and molecular evidence for C. annaskala and C. rosea (Scyphozoa: Semaeostomeae: Cyaneidae) in south-eastern Australia. Invertebr Syst 19:361–370CrossRefGoogle Scholar
  12. Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200:92–96PubMedCrossRefGoogle Scholar
  13. Duran S, Pascual M, Turon X (2004) Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Mar Biol 144:31–35CrossRefGoogle Scholar
  14. France SC, Hoover LL (2002) DNA sequences of the mitochondrial COI gene have low levels of divergence among deep-sea octocorals (Cnidaria: Anthozoa). Hydrobiologia 471:149–155CrossRefGoogle Scholar
  15. Fukami H, Knowlton N (2005) Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia). Coral Reefs 24:410–417CrossRefGoogle Scholar
  16. Fukami H, Omori M, Hatta H (2000) Phylogenetic relationships in the coral family Acroporidae, reassessed by inference from mitochondrial genes. Zool Sci 17:689–696CrossRefGoogle Scholar
  17. Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004a) Geographic difference in species boundaries among members of the Montastrea annularis complex based on molecular and morphological markers. Evolution 58:324–337Google Scholar
  18. Fukami H, Budd AF, Paulay G, Sole-Cava A, Chen CA, Iwao K, Knowlton N (2004b) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835Google Scholar
  19. Govindarajan AF, Halanych KM, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146:213–222CrossRefGoogle Scholar
  20. Govindarajan AF, Boero F, Halanych KM (2006) Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria). Mol Phylogenet Evol 38:820–834PubMedCrossRefGoogle Scholar
  21. Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35:229–256CrossRefGoogle Scholar
  22. Harris DJ (2003). Can you bank on GenBank? Trends Ecol Evol 18:317–319CrossRefGoogle Scholar
  23. Hebert PDN, Cywinska A., Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc Roy Soc Lond Ser B 270:313–321Google Scholar
  24. Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Roy Soc Lond Ser B 270: S96–S99Google Scholar
  25. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663CrossRefGoogle Scholar
  26. Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24PubMedCrossRefGoogle Scholar
  27. Holland BS, Dawson MN, Crow GL, Hofmann DK (2004) Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol 145:1119–1128CrossRefGoogle Scholar
  28. Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PDN (2007) Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 7:535–543CrossRefGoogle Scholar
  29. Kim J, Kim W, Cunningham CW (1999) A new perspective on lower metazoan relationships from 18S rDNA sequences. Mol Biol Evol 16:423–427PubMedGoogle Scholar
  30. Knowlton N, Maté J, Guzmán HM, Rowan R, Jara J (1997) Direct evidence for reproductive isolation among the three species of the Montastraea annularis complex in Central America (Panamá and Honduras). Mar Biol 127:705–711CrossRefGoogle Scholar
  31. Lavrov DV, Forget L, Kelly M, Lang BF (2005) Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol Biol Evol 22:1231–1239PubMedCrossRefGoogle Scholar
  32. Lefébure T, Douady CJ, Gouy M, Gibert J (2006) Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Mol Phylogenet Evol 40:435–447PubMedCrossRefGoogle Scholar
  33. McClellan DA, Woolley S (2004) AlignmentHelper, version 1.0. Brigham Young University, Provo, UTGoogle Scholar
  34. McFadden CS, Tullis ID, Hutchinson MB, Winner K, Sohm JA (2004) Variation in coding (NADH dehydrogenase subunits 2, 3, and 6) and noncoding intergenic spacer regions of the mitochondrial genome in Octocorallia (Cnidaria: Anthozoa). Mar Biotechnol 6:516–526PubMedCrossRefGoogle Scholar
  35. McFadden CS, France SC, Sánchez JA, Alderslade P (2006) A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol Phylogenet Evol 41:513–527PubMedCrossRefGoogle Scholar
  36. Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol 1:89–97PubMedCrossRefGoogle Scholar
  37. Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci 98:9707–9712PubMedCrossRefGoogle Scholar
  38. Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci 103:9096–9100PubMedCrossRefGoogle Scholar
  39. Meier R, Kwong S, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728PubMedCrossRefGoogle Scholar
  40. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:229–2238CrossRefGoogle Scholar
  41. Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18:69–292CrossRefGoogle Scholar
  42. Neigel J, Domingo A, Stake J (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26:487–499CrossRefGoogle Scholar
  43. Pont-Kingdon GA, Okada NA, Macfarlane JL, Beagley CT, Wolstenholme DR, Cavaliersmith T, Clarkwalker GD (1995) A coral mitochondrial mutS gene. Nature 375:109–111PubMedCrossRefGoogle Scholar
  44. Pont-Kingdon GA, Okada NA, Macfarlane JL, Beagley CT, Watkins-Sims CD, Cavalier-Smith T, Clark-Walker GD, Wolstenholme DR (1998) Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: a possible case of gene transfer from the nucleus to the mitochondrion. J Mol Evol 46:419–431PubMedCrossRefGoogle Scholar
  45. Pont-Kingdon GA, Vassort CG, Warrior R, Okimoto R, Beagley CT, Wolstenholme DR (2000) Mitochondrial DNA of Hydra attenuata (Cnidaria): a sequence that includes an end of one linear molecule and the genes for l-rRNA, tRNAf-Met, tRNATrp, COII, and ATPase8. J Mol Evol 51:404–415PubMedGoogle Scholar
  46. Reimer JD, Ono S, Fujiwara Y, Takishita K, Tsukahara J (2004) Reconsidering Zoanthus spp. diversity: molecular evidence of conspecifity within four previously presumed species. Zool Sci 21:517–525PubMedCrossRefGoogle Scholar
  47. Reimer JD, Ono S, Takishita K, Tsukahara J, Maruyama T (2006) Molecular evidence suggesting species in the zoanthid genera Palythoa and Protopalythoa (Anthozoa: Hexacorallia) are congeneric. Zool Sci 23:87–94PubMedCrossRefGoogle Scholar
  48. Sargent TD, Jamrich M, Dawid IB (1986) Cell interactions and the control of gene activity during early development of Xenopus laevis. Dev Biol 114:238–246PubMedCrossRefGoogle Scholar
  49. Schröder HC, Efremova SM, Itskovich VB, Belikov S, Masuda Y, Krasko A, Müller IM, Müller WEG (2003) Molecular phylogeny of the freshwater sponges in Lake Baikal. J Zool System Evol Res 41:80–86CrossRefGoogle Scholar
  50. Schroth W, Jarms G, Streit B, Schierwater B (2002) Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evol Biol 2:1PubMedCrossRefGoogle Scholar
  51. Seifert KA, Samson RA, deWaard JR, Houbraken J, André Lévesque C, Moncalvo JM, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci 104:3901–3906PubMedCrossRefGoogle Scholar
  52. Shearer TL, Coffroth MA (2007). Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour (in press). doi:  10.1111/j.1471-8286.2007.01996.x
  53. Shearer TL, van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487PubMedCrossRefGoogle Scholar
  54. Smith PJ, McVeagh SM, Mingoia JT, France SC (2004) Mitochondrial DNA sequence variation in deep-sea bamboo coral (Keratoisidinae) species in the southwest and northwest Pacific Ocean. Mar Biol 144:253–261CrossRefGoogle Scholar
  55. Tseng CC, Wallace CC, Chen CA (2005) Mitogenomic analysis of Montipora cactus and Anacropora matthai (cnidaria; scleractinia; acroporidae) indicates an unequal rate of mitochondrial evolution among Acroporidae corals. Coral Reefs 24:502–508CrossRefGoogle Scholar
  56. van Oppen MJH, Willis BL, Miller DJ (1999) Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proc Roy Soc Lond Ser B 266:179–183CrossRefGoogle Scholar
  57. van Oppen MJH, Catmull J, McDonald BJ, Hislop NR, Hagerman RJ, Miller DJ (2002) The mitochondrial genome of Acropora tenuis (Cnidaria; Scleractinia) contains a large group I intron and a candidate control region. J Mol Evol 55:1–13PubMedCrossRefGoogle Scholar
  58. van Oppen MJH, Koolmees EM, Veron JEN (2004) Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Mar Biol 144:9–18CrossRefGoogle Scholar
  59. Vilgalys R (2003) Taxonomic misidentification in public DNA databases. New Phytol 160:4–5CrossRefGoogle Scholar
  60. Watkins RF, Beckenbach AT (1999) Partial sequence of a sponge mitochondrial genome reveals sequence similarity to Cnidaria in cytochrome oxidase subunit II and the large ribosomal RNA subunit. J Mol Evol 48:542–554PubMedCrossRefGoogle Scholar
  61. Wörheide G (2006) Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar Biol 148:907–912CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Danwei Huang
    • 1
    • 2
    Email author
  • Rudolf Meier
    • 1
  • Peter A. Todd
    • 1
  • Loke Ming Chou
    • 1
  1. 1.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  2. 2.Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations