Skip to main content
Log in

Utility of DNA Barcoding for Tellinoidea: A Comparison of Distance, Coalescent and Character-based Methods on Multiple Genes

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

DNA barcoding has become a promising tool for rapid species identification using a short fragment of mitochondrial gene. Currently, an increasing number of analytical methods are available to assign DNA barcodes to taxa. The methods can be broadly divided into three main categories: (i) distance-based methods (the classical approach and the automatic barcode gap discovery (ABGD) approach), (ii) coalescent-based methods (the monophyly-based method and the general mixed Yule coalescent (GMYC) model) and (iii) the character-based method (CAOS). This study is set out to evaluate the availability of each method in barcoding Tellinoidea on the cytomchrome c oxidase subunit I (COI) and the 16 small-subunit ribosomal DNA (16S rDNA) genes. As a result, the character-based method was found to be the best in all cases, especially on a genus level. For distance-based methods, the elaborate one gained a success equal or greater than the basic one. The traditional coalescent-based method nicely delimited all of the tellinoideans on a species level. The GMYC model, which is the most radical, clearly inflated the number of species units by 34.6 % for COI gene and by 58.8 % for 16S gene. Thus, we conclude that CAOS better approximates a real barcode, and suggest the use of the ABGD method and the monophyly-based method for primary partitions. Additionally, COI gene may be more suitable as a standard barcode marker than 16S gene, particularly for tree-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bieler R, Carter JG, Coan EV (2010) Classification of bivalve families. Malacologia 52:113–133

    Google Scholar 

  • Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN (2007) DNA barcodes of closely related (but morphologically and ecologically distinct) species of butterflies (Hesperiidae) can differ by only one to three nucleotides. J Lepidopt Soc 61:138–153

    Google Scholar 

  • Coan EV, Valentich-Scott P (2012) Bivalve seashells of tropical West America. Marine bivalve mollusks from Baja California to northern Peru. Stanford University Press, Barbara, pp 209–258

    Google Scholar 

  • Dai L, Zheng X, Kong L, Li Q (2012) DNA barcoding analysis of Coleoidea (Mollusca: Cephalopoda) from Chinese waters. Mol Ecol Res 12:437–447

    Article  CAS  Google Scholar 

  • Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415

    Article  Google Scholar 

  • DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Phil Trans R Soc B 360:1905–1916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frézala L, Leblois R (2008) Four years of DNA barcoding: current advances and prospects. Infect Genet Evol 8:727–736

    Article  Google Scholar 

  • González MA, Baraloto C, Engel J et al (2009) Identification of Amazonian trees with DNA barcodes. PLoS ONE 4:e7483

    Article  PubMed Central  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95⁄98⁄NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard RJ (2003b) Barcoding animal life: cytochrome oxidase subunit 1 divergences among closely related species. Proc R Soc Lond Ser B 270:S96–S99

    Article  CAS  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101:14812–14817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hickerson MJ, Meyer CP, Moritz C (2006) DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 55:729–739

    Article  PubMed  Google Scholar 

  • Jörger KM, Norenburg JL, Wilson NG, Schrödl M (2012) Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evol Biol 12:245

    Article  PubMed Central  PubMed  Google Scholar 

  • Kerr KR, Birks SM, Kalyakin MV et al (2009) Filling the gap-COI barcode resolution in eastern Palearctic birds. Front Zool 6:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Kizirian D, Donnelly MA (2004) The criterion of reciprocal monophyly and classification of nested diversity at the species level. Mol Phylogenet Evol 32:1072–1076

    Article  PubMed  Google Scholar 

  • Knowles LL, Carstens BC (2007) Delimiting species without monophyletic gene trees. Syst Biol 56:887–895

    Article  PubMed  Google Scholar 

  • Laudien J, Flint NS, van der Bank FH, Brey T (2003) Genetic and morphological variation in four populations of the surf clam Donax serra (Roding) from southern African sandy beaches. Biochem Syst Ecol 31:751–772

    Article  CAS  Google Scholar 

  • Li Q, Park C, Kijima A (2002) Isolation and characterization of microsatellite loci in the Pacific abalone, Haliotis discus hannai. J Shellfish Res 21:811–815

    Google Scholar 

  • Little DP, Stevenson DW (2007) A comparison of algorithms for the identification of specimens using DNA barcodes: examples from gymnosperms. Cladistics 23:1–21

    Article  Google Scholar 

  • Lohse K (2009) Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006). Syst Biol 58:439–442

    Article  PubMed  Google Scholar 

  • Lowenstein JH, Amato G, Kolokotronis SO (2009) The real maccoyii: identifying tuna sushi with DNA barcodes—contrasting characteristic attributes and genetic distances. PLoS One 4:e7866

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu L, Chesters D, Zhang W et al (2012) Small mammal investigation in spotted fever focus with DNA-barcoding and taxonomic implications on rodents species from Hainan of China. PLoS ONE 7:e43479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lukhtanov VA, Sourakov A, Zakharov EV, Hebert PDN (2009) DNA barcoding Central Asian butterflies: increasing geographical dimension does not successfully reduce the success of species identification. Mol Ecol Res 9:1302–1310

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.71. http://mesquiteproject.org. Accessed 23 Mar 2010

  • Meier R, Zhang G, Ali F (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst Biol 57:809–813

    Article  PubMed  Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:2229–2238

    CAS  Google Scholar 

  • Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJG, Lees DC, Ranaivosolo R, Eggleton P, Barraclough TG, Vogler AP (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol 58:298–311

    Article  CAS  PubMed  Google Scholar 

  • Munch K, Boomsma W, Willerslev E, Nielsen R (2008) Fast phylogenetic DNA barcoding. Phil Trans Roy Soc B 363:3997–4002

    Article  CAS  Google Scholar 

  • Neigel J, Domingo A, Stake J (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26:487–499

    Article  Google Scholar 

  • Nielsen R, Matz M (2006) Statistical approaches for DNA barcoding. Syst Biol 55:162–169

    Article  PubMed  Google Scholar 

  • Papadopoulou A, Bergsten J, Fujisawa T et al (2008) Speciation and DNA barcodes: testing the effects of dispersal on the formation of discrete sequence clusters. Phil Trans Roy Soc B 363:2987–2996

    Article  Google Scholar 

  • Paz A, Crawford AJ (2012) Molecular-based rapid inventories of sympatric diversity: a comparison of DNA barcode clustering methods applied to geography-based vs clade-based sampling of amphibians. J Biosci 37:887–896

    Article  CAS  PubMed  Google Scholar 

  • Pons J, Barraclough T, Gomez-Zurita J et al (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609

    Article  PubMed  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  • Prezant RS (1998) Heterodonta: introduction. In: Beesley PL, Ross GJB, Wells A (eds) Mollusca: the southern synthesis. CSIRO Publishing, Melbourne, pp 289–294

    Google Scholar 

  • Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877

    Article  CAS  PubMed  Google Scholar 

  • Rach J, DeSalle R, Sarkar IN, Schierwater B, Hadrys H (2008) Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc R Soc Lond B 275:237–247

    Article  CAS  Google Scholar 

  • Reid BN, Le M, McCord WP, Iverson JB, Georges A, Bergmann T, Amato G, Desalle R, Naro-Maciel E (2011) Comparing and combining distance-based and character-based approaches for barcoding turtles. Mol Ecol Res 11:956–967

    Article  CAS  Google Scholar 

  • Robinson EA, Blagoev GA, Hebert PDN, Adamowicz SJ (2009) Prospects for using DNA barcoding to identify spiders in species-rich genera. Zookeys 16:27–46

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg NA (2007) Statistical tests for taxonomic distinctiveness from observations of monophyly. Evolution 61:317–323

    Article  PubMed  Google Scholar 

  • Rozas J, Sanchez DJC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Rubinoff D, Cameron S, Will K (2006) A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. J Hered 97:581–594

    Article  CAS  PubMed  Google Scholar 

  • Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302

    Article  CAS  PubMed  Google Scholar 

  • Sarkar IN, Planet PJ, Desalle R (2008) CAOS software for use in character-based DNA barcoding. Mol Ecol Res 8:1256–1259

    Article  CAS  Google Scholar 

  • Sun Y, Li Q, Kong L, Zhen X (2012) DNA barcoding of Caenogastropoda along coast of China based on the COI gene. Mol Ecol Res 12:209–218

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP: phylogenetic analysis using parsimony (and other methods). Version 4.0. Sinauer Associates, Massachusetts

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) Mega 4: molecular evolutionary genetics analyses (mega) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trewick SA (2008) DNA barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (Orthoptera: Acrididae). Cladistics 24:240–254

    Article  Google Scholar 

  • Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool 2:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Waugh J (2007) DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29:188–197

    Article  CAS  PubMed  Google Scholar 

  • Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55

    Article  Google Scholar 

  • Yassin A, Markow TA, Narechania AO, Grady PM, DeSalle R (2010) The genus Drosophila as a model for testing tree- and character-based methods of species identification using DNA barcoding. Mol Phylogenet Evol 57:509–517

    Article  CAS  PubMed  Google Scholar 

  • Yonge CM (1949) On the structure and adaptations of the Tellinoidea, deposit-feeding Eulamellibranchia. Phil Trans Roy Soc B 234:29–76

    Article  Google Scholar 

  • Zou S, Li Q, Kong L, Yu H, Zheng X (2011) Comparing the usefulness of distance, monophyly and character-based DNA barcoding methods in species identification: a case study of Neogastropoda. PLoS One 6:e26619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to Dr. Jun Chen from Ocean University of China, who collected all the samples used here. The study was supported by research grants from National Natural Science Foundation of China (41276138, 31372524) and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Information of specimens sequenced in this study. The individuals which were marked with * were amplified by universal COI primers. (DOC 112 kb)

Table S2

Primers used in this study. (DOC 30 kb)

Table S3

Information of sequences downloaded from GenBank. (DOC 49 kb)

Table S4

Character-based DNA barcodes for 17 tellinoidean species; character states (nucleotides) at 32 selected positions of the 16S gene region (ranging from 20–420); Taxa = abbreviations according to Table S1 and S3; numbers of individuals analyzed per species were given in brackets. (DOC 38 kb)

Table S5

Character-based DNA barcodes at the genus level: Character states (nucleotides) at 26 selected positions of the 16S rDNA gene region (ranging from 21–419); dashed cells indicate the occurrence of three or all four bases at this particular nucleotide position within a genus; numbers of analysed species and individuals were shown in brackets. (DOC 34 kb)

Fig. S1

Relative frequency distributions of intraspecific and interspecific distances according to different taxonomic levels for the 16S rDNA gene. (GIF 53 kb)

High-resolution image (TIFF 322 kb)

Fig. S2

Automatic partition of tellinoideans based on the16S rDNA gene. The number of groups inside the partition (initial and recursive) of each given prior intraspecific divergence value was reported. (GIF 15 kb)

High-resolution image (TIFF 201 kb)

Fig. S3

Bayesian tree of 16S gene of tellinoideans with Cardioidea as outgroups using CTR + G model. The posterior probabilities were shown when ≥0.80. (GIF 69 kb)

High-resolution image (TIFF 916 kb)

Fig. S4

Ultrametric NJ tree of tellinoideans species on based on the 16S rDNA gene, generated from 42 unique haplotypes. The red vertical line in the tree was the threshold point obtained from the GMYC model. (GIF 23 kb)

High-resolution image (TIFF 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Li, Q., Kong, L. et al. Utility of DNA Barcoding for Tellinoidea: A Comparison of Distance, Coalescent and Character-based Methods on Multiple Genes. Mar Biotechnol 17, 55–65 (2015). https://doi.org/10.1007/s10126-014-9596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-014-9596-6

Keywords

Navigation