Skip to main content
Log in

Single Mechanosensitive and Ca2+-Sensitive Channel Currents Recorded from Mouse and Human Embryonic Stem Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Cell-attached and inside-out patch clamp recording was used to compare the functional expression of membrane ion channels in mouse and human embryonic stem cells (ESCs). Both ESCs express mechanosensitive Ca2+ permeant cation channels (MscCa) and large conductance (200 pS) Ca2+-sensitive K+ (BKCa2+) channels but with markedly different patch densities. MscCa is expressed at higher density in mESCs compared with hESCs (70 % vs. 3 % of patches), whereas the BKCa2+ channel is more highly expressed in hESCs compared with mESCs (~50 % vs. 1 % of patches). ESCs of both species express a smaller conductance (25 pS) nonselective cation channel that is activated upon inside-out patch formation but is neither mechanosensitive nor strictly Ca2+-dependent. The finding that mouse and human ESCs express different channels that sense membrane tension and intracellular [Ca2+] may contribute to their different patterns of growth and differentiation in response to mechanical and chemical cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abeyta MJ, Clark AT, Rodriguez RT, Bodnar MS, Pera RA, Firpo MT (2004) Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum Mol Genet 13:601–608

    Article  PubMed  CAS  Google Scholar 

  • Amma H, Naruse K, Ishiguro N, Sokabe M (2005) Involvement of reactive oxygen species in cyclic stretch-induced NF-κB activation in human fibroblast cells. Br J Pharmacol 145:364–373

    Article  PubMed  CAS  Google Scholar 

  • Apati A, Paszty K, Erdei Z, Szebenyl K, Homolya L, Sarkadi B (2012) Calcium signaling in pluripotent stem cells. Mol Cell Endocrinol 353:57–67

    Article  PubMed  CAS  Google Scholar 

  • Barrett JN, Magleby KL, Pallota BS (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J Physiol 331:211–230

    PubMed  CAS  Google Scholar 

  • Basrai D, Kraft R, Bollensdor C, Liebmann L, Benndorf K, Patt S (2002) BK channel blockers inhibit potassium-induced proliferation of human astrocytoma cells. NeuroReport 3:403–407

    Article  Google Scholar 

  • Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, Kunzelmann K, Bubendorf L (2007) KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene 26:2525–2534

    Article  PubMed  CAS  Google Scholar 

  • Bormann J, Rundström N, Betz H, Langosch D (1993) Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. EMBO J 12:3729–3737

    PubMed  CAS  Google Scholar 

  • Brohawn SG, Del Mármol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K ion channel. Science 335:436–441

    Article  PubMed  CAS  Google Scholar 

  • Bronson SK, Smithies O (1994) Altering mice by homologous recombination using embryonic stem cells. J Biol Chem 269:27155–27158

    PubMed  CAS  Google Scholar 

  • Cho H, Koo JY, Kim S, Park SP, Yang Y, Oh U (2006) A novel mechanosensitive channel identified in sensory neurons. Eur J Neurosci 23:2543–2550

    Article  PubMed  Google Scholar 

  • Chokshi R, Matsushita M, Kozak JA (2012) Sensitivity of TRPM7 channels to Mg2+ characterized in cell-free patches of Jurkat T lymphocytes. Am J Physiol 302:C1642–C1651

    Article  CAS  Google Scholar 

  • Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS (2010) Soft substrates promote homogeneous self-renewal of embryonic stem cells via down regulating cell-matrix tractions. PLoS ONE 5(12):e15655

    Article  PubMed  CAS  Google Scholar 

  • Cohen DM, Chen CS (2008) Mechanical control of stem cell differentiation. In: StemBook. Harvard Stem Cell Institute, Cambridge, MA

  • Coiret G, Borowiec AS, Mariot P, Ouadid-Ahidouch H, Matifat F (2007) The antiestrogen tamoxifen activates BK channels and stimulates proliferation of MCF-7 breast cancer cells. Mol Pharmacol 71:843–851

    Article  PubMed  CAS  Google Scholar 

  • Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo F, Tiribuzi R, Armentano I, Kenny JM, Martino S, Orlacchio A (2011) Mechanotransduction: tuning stem cells fate. J Funct Biomater 2:67–87

    Article  CAS  Google Scholar 

  • Danciu TE, Adam RM, Naruse K, Freeman MR, Hauschka PV (2003) Calcium regulates the PI3K–Akt pathway in stretched osteoblasts. FEBS Lett 536:193–197

    Article  PubMed  CAS  Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    Article  PubMed  CAS  Google Scholar 

  • Dreesen O, Brivanlou AH (2007) Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev 3:7–17

    Article  PubMed  CAS  Google Scholar 

  • Evans M, Kaufman M (1981) Establishment in culture of pluripotent cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol 331:577–597

    PubMed  CAS  Google Scholar 

  • Gil Z, Magleby K, Silberberg SD (2001) Two-dimensional kinetic analysis suggests nonsequential gating of mechanosensitive channels in Xenopus oocytes. Biophys J 81:2082–2099

    Article  PubMed  CAS  Google Scholar 

  • Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS (2004) Differences between human and mouse embryonic stem cells. Dev Biol 269:360–380

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb PA, Sachs F (2012) Piezo1: properties of a cation selective mechanical channel. Channels 6:214–219

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honoré E (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455:1097–1103

    Article  PubMed  CAS  Google Scholar 

  • Guinamard R, Paulais M, Lourdel S, Teulon J (2012) A calcium-permeable non-selective cation channel in the thick ascending limb apical membrane of the mouse kidney. Biochim Biophys Acta 1818:1135–1141

    Article  PubMed  CAS  Google Scholar 

  • Gwak SJ, Bhang SH, Kim IK, Kim SS, Cho SW, Jeon O, Yoo KJ, Putnam AJ, Kim BS (2008) The effect of cyclic strain on embryonic stem cell–derived cardiomyocytes. Biomaterials 29:844–856

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP (2006) Patch clamp technique. Encyclopedia of life science. Wiley, New York

    Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  • Hamill OP, McBride DW Jr (1992) Rapid adaptation of the mechanosensitive channel in Xenopus oocytes. Proc Natl Acad Sci USA 89:7462–7466

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Sakmann B (1981) Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature 294:462–464

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth F (1981) Improved patch clamp techniques for high current resolution from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Bormann J, Sakmann B (1983) Glycine and GABA active multiple conductance state chloride channels in spinal cord neurones. Nature 305:805–808

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa K, Tatsumi H, Sokabe M (2007) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121:496–503

    Article  CAS  Google Scholar 

  • Hayashi Y, Furue KM, Okamoto T, Ohnuma K, Myoshi Y, Fukuhara Y, Abe T, Satao JD, Hata RI, Asashima M (2007) Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells 25:3005–3015

    Article  PubMed  CAS  Google Scholar 

  • Heo JS, Lee JC (2011) β-Catenin mediates cyclic strain-stimulated cardiomyogenesis in mouse embryonic stem cells through ROS-dependent and integrin-mediated PI3K/Akt pathways. J Cell Bioch 112:1880–1889

    Article  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hmadcha A, Domínguez-Bendala J, Wakeman J, Arredouani M, Soria B (2009) The immune boundaries for stem cell based therapies: problems and prospective solutions. J Cell Mol Med 13:1464–1475

    Article  PubMed  CAS  Google Scholar 

  • Ho TC, Horn NA, Huynh T, Kelava L, Lansman JB (2012) Evidence TRPV4 contributes to mechanosensitive ion channels in mouse skeletal muscle fibers. Channels 6:246–254

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi R, Akimoto T, Hong Z, Ushida T (2012) Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells. Exp Cell Res 318:1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Hovatta O, Mikkola M, Gertow K, Stromberg AM, Inzunza J, Hreinsson J, Rozell B, Blennow E, Andang M, Ahrlund-Richter L (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 18:1404–1409

    Article  PubMed  Google Scholar 

  • Jiang P, Rushing SN, Kong CW, Fu J, Lieu DK, Chan CW, Deng W, Li RA (2010) Electrophysiological properties of human induced pluripotent stem cells. Am J Physiol 289:C486–C495

    Article  CAS  Google Scholar 

  • Johnson BV, Shindo N, Rathjen PD, Rathjen J, Keough RA (2008) Understanding pluripotency—how ESC keep their options open. Mol Hum Reprod 4:513–520

    Article  CAS  Google Scholar 

  • Kapur N, Mignery GA, Banach K (2007) Cell cycle dependent calcium oscillations in mouse embryonic stem cells. Am J Physiol 292:C1510–C1518

    Article  CAS  Google Scholar 

  • Keung AJ, Kumar S, Schaffer DV (2010) Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu Rev Cell Dev Biol 26:533–556

    Article  PubMed  CAS  Google Scholar 

  • Khairallah RJ, Shi G, Sbrana F, Prosser BL, Borroto C, Mazaitis MJ, Hoffman EP, Mahurkar A, Sachs F, Sun Y, Chen YW, Raiteri R, Lederer WJ, Dorsey SJ, Ward CW (2012) Microtubules underlie dysfunction in duchenne muscular dystrophy. Sci Signal 5(236):ra56

    Google Scholar 

  • Kleger A, Seufferlein T, Malan D, Tischerdorf M, Storch A, Wolhein A, Latz S, Protze S, Porzner M, Proepper C, Brunner C, Katz SF, Varma Pusapati G, Bullinger L, Franz WM, Koehntop R, Giehl K, Spyrantis A, Wittekindt O, Lin Q, Zenke M, Fleischmann BK, Wartenberg M, Wobus AM, Boeckers TM, Liebau S (2010) Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells. Circulation 122:1823–1836

    Article  PubMed  CAS  Google Scholar 

  • Koestenbauer S, Zech NH, Juch H, Vanderzwalmen P, Schoonjans L, Dohr G (2006) Embryonic stem cells: similarities and differences between human and murine embryonic stem cells. Am J Reprod Immunol 55:169–180

    Article  PubMed  CAS  Google Scholar 

  • Koivisto A, Klinge A, Nedergaard J, Siemen D (1998) Regulation of the activity of 27 pS nonselective cation channels in excised membrane patches from rat brown-fat cells. Cell Physiol Biochem 8:231–245

    Article  PubMed  CAS  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    Article  PubMed  CAS  Google Scholar 

  • Large WA (2002) Receptor-operated Ca2+-permeable nonselective cation channels in vascular smooth muscle: a physiologic perspective. J Cardiovasc Electrophysiol 13:493–501

    Article  PubMed  Google Scholar 

  • Lau YT, Wong CK, Luo J, Leung LH, Tsang PF, Bian ZX, Tsang SY (2011) Effects of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers on the proliferation and cell cycle progression of embryonic stem cells. Pflugers Arch 461:191–202

    Article  PubMed  CAS  Google Scholar 

  • Lee DA, Knight MM, Campbell JJ, Bader DL (2011) Stem cell mechanobiology. J Cell Biochem 112:1–9

    Article  PubMed  CAS  Google Scholar 

  • Loukin S, Zhou XL, Su ZW, Saimi Y, Kung C (2010) Wild-type and brachyolmia-causing mutant TRPV4 channels respond directly to stretch force. J Biol Chem 285:27176–27181

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Nilius B, Wong JW, Huang Y, Yao X (2011) Electrophysiological properties of heteromeric TRPV4-C1 channels. Biochim Biophys Acta 1808:2789–2797

    Article  PubMed  CAS  Google Scholar 

  • Machaca K (2010) Ca2+ signaling, genes and the cell cycle. Cell Calcium 48:243–250

    Article  PubMed  CAS  Google Scholar 

  • Maroto R, Hamill OP (2001) Brefeldin A block of integrin-dependent mechanosensitive ATP release from Xenopus oocytes reveals a novel mechanism of mechanotransduction. J Biol Chem 276:23867–23872

    Article  PubMed  CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:1443–1446

    Article  CAS  Google Scholar 

  • Maroto R, Kurosky A, Hamill OP (2012) Mechanosensitive Ca2+ permeant channels in human prostate tumor cells. Channels 6:290–307

    Article  PubMed  CAS  Google Scholar 

  • Martin G (1981) Isolation of a pluripoent cell line from early mouse embryos cultured in medium conditioned by tetracarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  • Martinac B (2012) Mechanosensitive ion channels: an evolutionary and scientific tour de force in mechanobiology. Channels 6:211–213

    Article  PubMed  Google Scholar 

  • Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakmann B (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:406–411

    Article  PubMed  CAS  Google Scholar 

  • Naruse K, Yamada T, Sokabe M (1998) Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol 274:H1532–H1538

    PubMed  CAS  Google Scholar 

  • Ng SY, Chin CH, Lau YT, Luo J, Wong CK, Bian ZX, Tsang SY (2010) Role of voltage-gated potassium channels in the fate determination of embryonic stem cells. J Cell Physiol 224:165–177

    PubMed  CAS  Google Scholar 

  • Nilius B, Droogmans G, Gericke M, Schwarz G (1993) Nonselective ion pathways in human endothelial cells. EXS 66:269–280

    PubMed  CAS  Google Scholar 

  • Numata T, Shimizu T, Okada Y (2007) TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol 292:C460–C467

    Article  CAS  Google Scholar 

  • Oh SK, Kim HS, Park YB, Seol HW, Kim YY, Cho MS, Ku SY, Choi YM, Kim DW, Moon SY (2005) Methods for expansion of human embryonic stem cells. Stem Cells 23:605–609

    Article  PubMed  CAS  Google Scholar 

  • Ostrow LW, Suchyna TM, Sachs F (2011) Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs). Biochem Biophys Res Commun 410:81–86

    Article  PubMed  CAS  Google Scholar 

  • Ouadid-Ahidouch H, Roudbaraki M, Ahidouch A, Delcourt P, Prevarskaya N (2004) Cell-cycle-dependent expression of the large Ca2+-activated K+ channels in breast cancer cells. Biochem Biophys Res Commun 316:244–251

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Lazdunski M, Honoré E (2001) Lipid and mechano-gated 2P domain K+ channels. Curr Opin Cell Biol 3:422–428

    Article  Google Scholar 

  • Pease S, Williams RL (1990) Formation of germ-line chimeras from embryonic stem cells maintained with recombinant leukemia inhibitory factor. Exp Cell Res 190:209–211

    Article  PubMed  CAS  Google Scholar 

  • Pera MF, Tam PPL (2010) Extrinsic regulation of pluripotent stem cells. Nature 465:713–720

    Article  PubMed  CAS  Google Scholar 

  • Rao M (2004) Conserved and divergent paths that regulate self renewal in mouse and human embryonic stem cells. Dev Biol 275:269–286

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Gómez JA, Levitsky KL, López-Barneo J (2012) T-type Ca2+ channels in mouse embryonic stem cells: modulation during cell cycle and contribution to self-renewal. Am J Physiol 302:C494–C504

    Article  CAS  Google Scholar 

  • Roger S, Potier M, Vandier C, Le Guennec JY, Besson P (2004) Description and role in proliferation of iberiotoxin-sensitive currents in different human mammary epithelial normal and cancerous cells. Biochim Biophys Acta 1667:190–199

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Juan LJ, De Pablo JJ, Palecek SP (2006) Inhibition of human embryonic stem cell differentiation by mechanical strain. J Cell Physiol 206:126–137

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Juan LJ, De Pablo JJ, Palecek SP (2008) TGFβ/Activin/Nodal pathway in inhibition of hESC differentiation by mechanical strain. Biophys J 94:4123–4133

    Article  PubMed  CAS  Google Scholar 

  • Sakmann B, Neher E (1983) Geometric parameters of pipettes and membrane patches. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum Press, New York, pp 37–76

    Chapter  Google Scholar 

  • Sato N, Sanjuan IM, Heke M, Uchida M, Naef F, Brivanlou AH (2003) Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 260:404–413

    Article  PubMed  CAS  Google Scholar 

  • Schmelter M, Ateghang B, Helmig S, Watenberg M, Sauer H (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain–induced cardiovascular differentiation. FASEB J 20:E294–E306

    Article  CAS  Google Scholar 

  • Schwirtlich M, Emri Z, Antal K, Mate Z, Katarova Z, Szabo G (2010) GABA(A) and GABA(B) receptors of distinct properties affect oppositely the proliferation of mouse embryonic stem cells through synergistic elevation of intracellular Ca2+. FASEB J 24:1218–1228

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Yamamoto K, Obi S, Kumagaya S, Masumura T, Shimano Y, Naruse K, Yamashita JK, Igarashi T, Ando J (2008) Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor. J Appl Physiol 104:766–772

    Article  PubMed  CAS  Google Scholar 

  • Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    Article  PubMed  CAS  Google Scholar 

  • Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591

    Article  PubMed  CAS  Google Scholar 

  • Steinbacher S, Bass R, Strop P, Rees DC (2007) Structures of the prokaryotic mechanosensitive channels MscL and MscS. Curr Top Membr 58:1–24

    Article  CAS  Google Scholar 

  • Suchyna TM, Besch SR, Sachs F (2004) Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time. Phys Biol 1:1–18

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Chen CS, Fu J (2012) Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 41:519–542

    Article  PubMed  CAS  Google Scholar 

  • Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 5:231–246

    Article  Google Scholar 

  • Taglietti V, Toselli M (1988) A study of stretch-activated channels in the membrane of frog oocytes: interactions with Ca2+ ions. J Physiol 407:311–328

    PubMed  CAS  Google Scholar 

  • Teramura T, Takehara T, Onodera Y, Nakagaw K, Hamanishi C, Fukuda K (2012) Mechanical stimulation of cyclic tensile strain induces reduction of pluripotent related gene expressions via activation of Rho/ROCK and subsequent decreasing of AKT phosphorylation in human induced pluripotent stem cells. Biochem Biophys Res Commun 417:836–841

    Article  PubMed  CAS  Google Scholar 

  • Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo–derived stem cells. Cell 51:503–512

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Tierney ML (2011) Insights into the biophysical properties of GABAA ion channels: nodulation of ion permeation by drugs and protein interactions. Biochim Biophys Acta 1808:667–673

    Article  PubMed  CAS  Google Scholar 

  • Van Hoof D, Passier R, Ward-Van Oostwaard D, Pinkse MW, Heck AJ, Mummery CL, Krijgsveld J (2006) Quest for human and mouse embryonic stem cell–specific proteins. Mol Cell Proteomics 7:1261–1273

    Google Scholar 

  • Vasquez I, Tan N, Boonyasampant M, Koppitch KA, Lansman JB (2012) Partial opening and subconductance gating of mechanosensitive ion channels in dystrophic skeletal muscle. J Physiol 590:1–18

    Article  CAS  Google Scholar 

  • Wan CR, Chung S, Kamm RD (2011) Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann Biomed Eng 39:1840–1847

    Article  PubMed  Google Scholar 

  • Wang JG, Miyazu M, Matsushita E, Sokabe M, Naruse K (2001) Uniaxial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem Biophys Res Comm 288:356–361

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Xue T, Tsang SY, Van Huizen R, Wong CW, Lai KW, Ye Z, Cheng L, Au KW, Zhang J, Li GR, Lau CP, Tse HF, Li RA (2005) Electrophysiological properties of human and mouse embryonic stem cells. Stem Cells 23:1526–1534

    Article  PubMed  CAS  Google Scholar 

  • Weissman I (2005) Stem cell research: paths to cancer therapies and regenerative medicine. JAMA 294:1359–1366

    Article  PubMed  CAS  Google Scholar 

  • Wu G, McBride DW Jr, Hamill OP (1998) Mg2+ block and inward rectification of mechanosensitive channels in Xenopus oocytes. Pflugers Arch 435:572–574

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhu Y, Hahm HS, Wei W, Hao E, Hayek A, Ding S (2010) Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci USA 107:8129–8134

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Suzuki H (1996) Two types of stretch-activated channel activities in guinea-pig gastric smooth muscle cells. Jpn J Physiol 46:337–345

    Article  PubMed  CAS  Google Scholar 

  • Yanagida E, Shoji S, Hirayama Y, Yoshikawa F, Otsu K, Uematsu H, Hiraoka M, Furuichi T, Kawano S (2004) Functional expression of Ca2+ signaling pathways in mouse embryonic stem cells. Cell Calcium 36:135–146

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Kwan H-Y, Huang Y (2001) Stretch-sensitive switching among different channels sublevles of an endothelial cation channel. Biochim Biophys Acta 1511:381–390

    Article  PubMed  CAS  Google Scholar 

  • Zanou N, Shapovalov G, Louis M, Tajeddine N, Gallo C, Van Schoor M, Anguish I, Cao ML, Schakman O, Dietrich A, Lebacq J, Ruegg U, Roulet E, Birnbaumer L, Gailly P (2009) Role of TRPC1 channel in skeletal muscle function. Am J Physiol Cell Physiol 298:C149–C163

    Article  PubMed  CAS  Google Scholar 

  • Zou H, Lifshitz LM, Tuft RA, Fogarty KE, Singer JJ (2004) Imaging calcium entering the cytosol through a single opening of plasma membrane ion channels: SCCaFTs—fundamental calcium events. Cell Calcium 35:523–533

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

OH was supported by a travel/stay Grant from Ministerio de Educación y Ciencia (SAB2006-0211) and in the United States by grants from the National Cancer Institute and the Department of Defense. BS and AH are supported by the Fundación Progreso y Salud, Consejería de Salud, Junta de Andalucía (PI-0022/2008); Consejería de Innovación Ciencia y Empresa, Junta de Andalucía (CTS-6505; INP-2011-1615-900000); FEDER cofunded grants from Instituto de Salud Carlos III (Red TerCel-RD06/0010/0025; PI10/00964), and the Ministry of Health and Consumer Affairs (Advanced Therapies Program TRA-120). CIBERDEM is an initiative of the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen P. Hamill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soria, B., Navas, S., Hmadcha, A. et al. Single Mechanosensitive and Ca2+-Sensitive Channel Currents Recorded from Mouse and Human Embryonic Stem Cells. J Membrane Biol 246, 215–230 (2013). https://doi.org/10.1007/s00232-012-9523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9523-6

Keywords

Navigation