Skip to main content
Log in

Differentiation of Embryonic Stem Cells into Cardiomyocytes in a Compliant Microfluidic System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The differentiation process of murine embryonic stem cells into cardiomyocytes was investigated with a compliant microfluidic platform which allows for versatile cell seeding arrangements, optical observation access, long-term cell viability, and programmable uniaxial cyclic stretch. Specifically, two environmental cues were examined with this platform—culture dimensions and uniaxial cyclic stretch. First, the cardiomyogenic differentiation process, assessed by a GFP reporter driven by the α-MHC promoter, was enhanced in microfluidic devices (µFDs) compared with conventional well-plates. The addition of BMP-2 neutralizing antibody reduced the enhancement observed in the µFDs and the addition of exogenous BMP-2 augmented the cardiomyogenic differentiation in well plates. Second, 24 h of uniaxial cyclic stretch at 1 Hz and 10% strain on day 9 of differentiation was found to have a negative impact on cardiomyogenic differentiation. This microfluidic platform builds upon an existing design and extends its capability to test cellular responses to mechanical strain. It provides capabilities not found in other systems for studying differentiation, such as seeding embryoid bodies in 2D or 3D in combination with cyclic strain. This study demonstrates that the microfluidic system contributes to enhanced cardiomyogenic differentiation and may be a superior platform compared with conventional well plates. In addition to studying the effect of cyclic stretch on cardiomyogenic differentiation, this compliant platform can also be applied to investigate other biological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alsan, B. H., and T. M. Schultheiss. Regulation of avian cardiogenesis by Fgf8 signaling. Development 129:1935–1943, 2002.

    PubMed  CAS  Google Scholar 

  2. Barron, M., M. Gao, and J. Lough. Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Dev. Dyn. 218:383–393, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Boheler, K. R., J. Czyz, D. Tweedie, H. T. Yang, S. V. Anisimov, and A. M. Wobus. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91:189–201, 2002.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, K., L. Wu, and Z. Z. Wang. Extrinsic regulation of cardiomyocyte differentiation of embryonic stem cells. J. Cell. Biochem. 104:119–128, 2008.

    Article  PubMed  CAS  Google Scholar 

  5. Chung, S., R. Sudo, P. J. Mack, C. Wan, V. Vickerman, and R. D. Kamm. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9:269–275, 2009.

    Article  PubMed  CAS  Google Scholar 

  6. Dickman, E. D., and S. M. Smith. Selective regulation of cardiomyocyte gene expression and cardiac morphogenesis by retinoic acid. Dev. Dyn. 206:39–48, 1996.

    Article  PubMed  CAS  Google Scholar 

  7. Gallo, P., and G. Condorelli. Human embryonic stem cell-derived cardiomyocytes: inducing strategies. Regen. Med. 1:183–194, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Heng, B. C., H. K. Haider, E. K. W. Sim, T. Cao, and S. C. Ng. Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc. Res. 62:34–42, 2004.

    Article  PubMed  CAS  Google Scholar 

  9. Hwang, Y. S., B. G. Chung, D. Ortmann, N. Hattori, H. C. Moeller, and A. Khademhosseini. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. USA 106:16978–16983, 2009.

    Article  PubMed  CAS  Google Scholar 

  10. Jacot, J. G., J. C. Martin, and D. L. Hunt. Mechanobiology of cardiomyocyte development. J. Biomech. 43:93–98, 2010.

    Article  PubMed  Google Scholar 

  11. Kawai, T., T. Takahashi, M. Esaki, H. Ushikoshi, S. Nagano, H. Fujiwara, and K. Kosai. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ. J. 68:691–702, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Ke, Q., Y. Yang, J. S. Rana, Y. Chen, J. P. Morgan, and Y. F. Xiao. Embryonic stem cells cultured in biodegradable scaffold repair infarcted myocardium in mice. Sheng Li Xue Bao. 57:673–681, 2005.

    PubMed  CAS  Google Scholar 

  13. Kellar, R. S., L. K. Landeen, B. R. Shepherd, G. K. Naughton, A. Ratcliffe, and S. K. Williams. Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation 104:2063–2068, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, Y. Y., S. Y. Ku, J. Jang, S. K. Oh, H. S. Kim, S. H. Kim, Y. M. Choi, and S. Y. Moon. Use of long-term cultured embryoid bodies may enhance cardiomyocyte differentiation by BMP2. Yonsei Med. J. 49:819–827, 2008.

    Article  PubMed  CAS  Google Scholar 

  15. Laflamme, M. A., and C. E. Murry. Regenerating the heart. Nat. Biotechnol. 23:845–856, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Leor, J., S. Aboulafia-Etzion, A. Dar, L. Shapiro, I. M. Barbash, A. Battler, Y. Granot, and S. Cohen. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102:III56–III61, 2000.

    PubMed  CAS  Google Scholar 

  17. Mammoto, T., and D. E. Ingber. Mechanical control of tissue and organ development. Development 137:1407–1420, 2010.

    Article  PubMed  CAS  Google Scholar 

  18. Matsumoto, T., Y. C. Yung, C. Fischbach, H. J. Kong, R. Nakaoka, and D. J. Mooney. Mechanical strain regulates endothelial cell patterning in vitro. Tissue Eng. 13:207–217, 2007.

    Article  PubMed  CAS  Google Scholar 

  19. Meyvantsson, I., and D. J. Beebe. Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1:423–449, 2008.

    Article  CAS  Google Scholar 

  20. Monzen, K., I. Shiojima, Y. Hiroi, S. Kudoh, T. Oka, E. Takimoto, D. Hayashi, T. Hosoda, A. Habara-Ohkubo, T. Nakaoka, T. Fujita, Y. Yazaki, and I. Komuro. Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA-4 Mol. Cell Biol. 19:7096–7105, 1999.

    CAS  Google Scholar 

  21. Paquin, J., B. A. Danalache, M. Jankowski, S. M. McCann, and J. Gutkowska. Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc. Natl. Acad. Sci. USA 99:9550–9555, 2002.

    Article  PubMed  CAS  Google Scholar 

  22. Patwari, P., and R. T. Lee. Mechanical control of tissue morphogenesis. Circ. Res. 103:234–243, 2008.

    Article  PubMed  CAS  Google Scholar 

  23. Rathjen, J., and P. D. Rathjen. Mouse ES cells: experimental exploitation of pluripotent differentiation potential. Curr. Opin. Genet. Dev. 11:587–594, 2001.

    Article  PubMed  CAS  Google Scholar 

  24. Raty, S., E. M. Walters, J. Davis, H. Zeringue, D. J. Beebe, S. L. Rodriguez-Zas, and M. B. Wheeler. Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 4:186–190, 2004.

    Article  PubMed  CAS  Google Scholar 

  25. Saha, S., L. Ji, J. J. de Pablo, and S. P. Palecek. TGF beta/activin. Biophys. J. 94:4123–4133, 2008.

    Article  PubMed  CAS  Google Scholar 

  26. Saha, S., J. Lin, J. J. De Pablo, and S. P. Palecek. Inhibition of human embryonic stem cell differentiation by mechanical strain. J. Cell. Physiol. 206:126–137, 2006.

    Article  PubMed  CAS  Google Scholar 

  27. Samuelson, L. C., and J. M. Metzger. Differentiation of embryonic stem (ES) cells using the hanging drop method. Cold Spring Harb. Protoc. 2006. doi:10.1101/pdb.prot4485.

  28. Sauer, H. Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett. 476:218–223, 2000.

    Article  PubMed  CAS  Google Scholar 

  29. Sauer, H., G. Rahimi, J. Hescheler, and M. Wartenberg. Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J. Cell. Biochem. 75:710–723, 1999.

    Article  PubMed  CAS  Google Scholar 

  30. Schmelter, M., B. Ateghang, S. Helmig, M. Wartenberg, and H. Sauer. Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J. 20:1182–1184, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Schultheiss, T. M., J. B. Burch, and A. B. Lassar. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 11:451–462, 1997.

    Article  PubMed  CAS  Google Scholar 

  32. Segers, V. F. M., and R. T. Lee. Stem-cell therapy for cardiac disease. Nature 451:937–942, 2008.

    Article  PubMed  CAS  Google Scholar 

  33. Serena, E., E. Figallo, N. Tandon, C. Cannizzaro, S. Gerecht, N. Elvassore, and G. Vunjak-Novakovic. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp. Cell Res. 315:3611–3619, 2009.

    Article  PubMed  CAS  Google Scholar 

  34. Shimko, V. F., and W. C. Claycomb. Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng Part A. 14(1):49–58, 2008.

    Google Scholar 

  35. Sudo, R., S. Chung, I. K. Zervantonakis, V. Vickerman, Y. Toshimitsu, L. G. Griffith, and R. D. Kamm. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 23(7):2155–2164, 2009.

    Article  PubMed  CAS  Google Scholar 

  36. Takahashi, T., B. Lord, P. C. Schulze, R. M. Fryer, S. S. Sarang, S. R. Gullans, and R. T. Lee. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107:1912–1916, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. van Laake, L. W., R. Passier, J. Monshouwer-Kloots, A. J. Verkleij, D. J. Lips, C. Freund, K. den Ouden, D. van Ward-Oostwaard, J. Korving, L. G. Tertoolen, C. J. van Echteld, P. A. Doevendans, and C. L. Mummery. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 1:9–24, 2007.

    Article  PubMed  Google Scholar 

  38. Walker, G. M., H. C. Zeringue, and D. J. Beebe. Microenvironment design considerations for cellular scale studies. Lab Chip 4:91–97, 2004.

    Article  PubMed  CAS  Google Scholar 

  39. Yamada, M., J. P. Revelli, G. Eichele, M. Barron, and R. J. Schwartz. Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev. Biol. 228:95–105, 2000.

    Article  PubMed  CAS  Google Scholar 

  40. Yu, H., I. Meyvantsson, I. A. Shkel, and D. J. Beebe. Diffusion dependent cell behavior in microenvironments. Lab Chip 5:1089–1095, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contribution of Dr. Richard Lee for his invaluable suggestions on this work. Seok Chung was supported by the International Research & Development Program (Grant number: 2009-00631). We acknowledge support from the Singapore-MIT Alliance for Research and Technology and an American Heart Association Predoctoral Fellowship for Chen-rei Wan. This work was also supported by National Science Foundation (Science and Technology Center (EBICS) Emergent Behaviors of Integrated Cellular Systems Grant CBET-0939511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Kamm.

Additional information

Associate Editor Laura Suggs oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Cr., Chung, S. & Kamm, R.D. Differentiation of Embryonic Stem Cells into Cardiomyocytes in a Compliant Microfluidic System. Ann Biomed Eng 39, 1840–1847 (2011). https://doi.org/10.1007/s10439-011-0275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0275-8

Keywords

Navigation