Skip to main content

Advertisement

Log in

Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Biophysical signaling, an integral regulator of long-term cell behavior in both excitable and non-excitable cell types, offers enormous potential for modulation of important cell functions. Of particular interest to current regenerative medicine efforts, we review several examples that support the functional role of transmembrane potential (Vmem) in the regulation of proliferation and differentiation. Interestingly, distinct Vmem controls are found in many cancer cell and precursor cell systems, which are known for their proliferative and differentiation capacities, respectively. Collectively, the data demonstrate that bioelectric properties can serve as markers for cell characterization and can control cell mitotic activity, cell cycle progression, and differentiation. The ability to control cell functions by modulating bioelectric properties such as Vmem would be an invaluable tool for directing stem cell behavior toward therapeutic goals. Biophysical properties of stem cells have only recently begun to be studied and are thus in need of further characterization. Understanding the molecular and mechanistic basis of biophysical regulation will point the way toward novel ways to rationally direct cell functions, allowing us to capitalize upon the potential of biophysical signaling for regenerative medicine and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Robinson, K. R., & Messerli, M. A. (1996). Electric embryos: the embryonic epithelium as a generator of developmental information. In C. D. McCaig (Ed.), Nerve growth and guidance (pp. 131–150). London: Portland.

    Google Scholar 

  2. Jaffe, L. F., & Nuccitelli, R. (1977). Electrical controls of development. Annual Review of Biophysics and Bioengineering, 6, 445–476.

    Article  PubMed  CAS  Google Scholar 

  3. Lund, E. (1947). Bioelectric fields and growth. Austin: University of Texas Press.

    Google Scholar 

  4. Borgens, R. B. (1982). What is the role of naturally produced electric current in vertebrate regeneration and healing. International Review of Cytology, 76, 245–298.

    Article  PubMed  CAS  Google Scholar 

  5. Borgens, R. B., Vanable, J. W., Jr., & Jaffe, L. F. (1977). Bioelectricity and regeneration. I. Initiation of frog limb regeneration by minute currents. Journal of Experimental Zoology, 200, 403–416.

    Article  PubMed  CAS  Google Scholar 

  6. Mathews, A. P. (1903). Electrical polarity in the hydroids. American Journal of Physiology, 8, 294–299.

    Google Scholar 

  7. McCaig, C. D., Rajnicek, A. M., Song, B., & Zhao, M. (2005). Controlling cell behavior electrically: Current views and future potential. Physiological Reviews, 85, 943–978.

    Article  PubMed  Google Scholar 

  8. Levin, M. (2007). Large-scale biophysics: Ion flows and regeneration. Trends in Cell Biology, 17, 262–271.

    Article  CAS  Google Scholar 

  9. Adams, D. S., Masi, A., & Levin, M. (2007). H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development, 134, 1323–1335.

    Article  PubMed  CAS  Google Scholar 

  10. Zhao, M., Song, B., Pu, J., et al. (2006). Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature, 442, 457–460.

    Article  PubMed  CAS  Google Scholar 

  11. Arcangeli, A. (2005). Expression and role of hERG channels in cancer cells. Novartis Foundation Symposium, 266, 225–232. discussion 32–4.

    Article  PubMed  CAS  Google Scholar 

  12. Mycielska, M. E., & Djamgoz, M. B. (2004). Cellular mechanisms of direct-current electric field effects: Galvanotaxis and metastatic disease. Journal of Cell Science, 117, 1631–1639.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, Z. (2004). Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Archiv, 448, 274–286.

    Article  PubMed  CAS  Google Scholar 

  14. Bortner, C. D., & Cidlowski, J. A. (2004). The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Pflugers Archiv, 448, 313–318.

    Article  PubMed  CAS  Google Scholar 

  15. Franco, R., Bortner, C. D., & Cidlowski, J. A. (2006). Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis. Journal of Membrane Biology, 209, 43–58.

    Article  PubMed  CAS  Google Scholar 

  16. Ling, G., & Gerard, R. W. (1949). The normal membrane potential of frog sartorius fibers. Journal of Cellular and Comparative Physiology, 34, 383–396.

    Article  CAS  Google Scholar 

  17. Stuart, G. J., & Palmer, L. M. (2006). Imaging membrane potential in dendrites and axons of single neurons. Pflugers Archiv, 453, 403–410.

    Article  PubMed  CAS  Google Scholar 

  18. Molleman, A. (2003). Patch clamping: an introductory guide to patch clamp electrophysiology. Chichester, England: Wiley.

    Google Scholar 

  19. González, J. E., & Tsien, R. Y. (1997). Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. Chemistry & Biology, 4, 269–277.

    Article  Google Scholar 

  20. Loew, L. M. (1992). Voltage-sensitive dyes: Measurement of membrane potentials induced by DC and AC electric fields. Bioelectromagnetics, (Suppl 1):179–89.

  21. Brüggemann, A., Stoelzle, S., George, M., Behrends, J. C., & Fertig, N. (2006). Microchip technology for automated and parallel patch-clamp recording. Small, 2, 840–846.

    Article  PubMed  CAS  Google Scholar 

  22. Millard, A. C., Jin, L., Wei, M. D., Wuskell, J. P., Lewis, A., & Loew, L. M. (2004). Sensitivity of second harmonic generation from styryl dyes to transmembrane potential. Biophysical Journal, 86, 1169–1176.

    Article  PubMed  CAS  Google Scholar 

  23. Plášek, J., & Sigler, K. (1996). Slow fluorescent indicators of membrane potential: A survey of different approaches to probe response analysis. Journal of Photochemistry and Photobiology. B, Biology, 33, 101–124.

    Article  PubMed  Google Scholar 

  24. Binggeli, R., & Weinstein, R. C. (1986). Membrane potentials and sodium channels: Hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. Journal of Theoretical Biology, 123, 377–401.

    Article  PubMed  CAS  Google Scholar 

  25. Cone, C. D., Jr. (1971). Unified theory on the basic mechanism of normal mitotic control and oncogenesis. Journal of Theoretical Biology, 30, 151–181.

    Article  PubMed  CAS  Google Scholar 

  26. Cone, C. D., Jr., & Tongier, M., Jr. (1973). Contact inhibition of division: Involvement of the electrical transmembrane potential. Journal of Cellular Physiology, 82, 373–386.

    Article  PubMed  CAS  Google Scholar 

  27. Adams, D. S., & Levin, M. (2006). Strategies and techniques for investigation of biophysical signals in patterning. In M. Whitman & A. K. Sater (Eds.), Analysis of growth factor signaling in embryos: Taylor and Francis books (pp. 177–262).

  28. MacFarlane, S. N., & Sontheimer, H. (2000). Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. GLIA, 30, 39–48.

    Article  PubMed  CAS  Google Scholar 

  29. Dubois, J. M., & Rouzaire-Dubois, B. (1993). Role of potassium channels in mitogenesis. Progress in Biophysics and Molecular Biology, 59, 1–21.

    Article  PubMed  CAS  Google Scholar 

  30. Wonderlin, W. F., & Strobl, J. S. (1996). Potassium channels, proliferation and G1 progression. Journal of Membrane Biology, 154, 91–107.

    Article  PubMed  CAS  Google Scholar 

  31. Cone, C. D., & Cone, C. M. (1976). Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science, 192, 155–158.

    Article  PubMed  CAS  Google Scholar 

  32. Stillwell, E. F., Cone, C. M., & Cone, C. D. (1973). Stimulation of DNA synthesis in CNS neurones by sustained depolarisation. Nature: New Biology, 246, 110–111.

    Article  CAS  Google Scholar 

  33. Cone, C. D., & Tongier, M. (1971). Control of somatic cell mitosis by simulated changes in the transmembrane potential level. Oncology, 25, 168–182.

    Article  PubMed  CAS  Google Scholar 

  34. Bordey, A., Lyons, S. A., Hablitz, J. J., & Sontheimer, H. (2001). Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. Journal of Neurophysiology, 85, 1719–1731.

    PubMed  CAS  Google Scholar 

  35. MacFarlane, S. N., & Sontheimer, H. (1997). Electrophysiological changes that accompany reactive gliosis in vitro. Journal of Neuroscience, 17, 7316–7329.

    PubMed  CAS  Google Scholar 

  36. Bordey, A., & Sontheimer, H. (1997). Postnatal development of ionic currents in rat hippocampal astrocytes in situ. Journal of Neurophysiology, 78, 461–477.

    PubMed  CAS  Google Scholar 

  37. Ransom, C. B., & Sontheimer, H. (1995). Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes. Journal of Neurophysiology, 73, 333–346.

    PubMed  CAS  Google Scholar 

  38. Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84, 767–801.

    Article  PubMed  CAS  Google Scholar 

  39. Beech, D. J. (2007). Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases. Biochemical Society Transactions, 35, 890–894.

    Article  PubMed  CAS  Google Scholar 

  40. Gollasch, M., Haase, H., Ried, C., et al. (1998). L-type calcium channel expression depends on the differentiated state of vascular smooth muscle cells. FASEB Journal, 12, 593–601.

    PubMed  CAS  Google Scholar 

  41. Richard, S., Neveu, D., Carnac, G., Bodin, P., Travo, P., & Nargeot, J. (1992). Differential expression of voltage-gated Ca2+-currents in cultivated aortic myocytes. Biochimica et Biophysica Acta—Protein Structure and Molecular Enzymology, 1160, 95–104.

    Article  CAS  Google Scholar 

  42. Neylon, C. B., Lang, R. J., Fu, Y., Bobik, A., & Reinhart, P. H. (1999). Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. Circulation Research, 85, e33–e43.

    PubMed  CAS  Google Scholar 

  43. Freedman, B. D., Price, M. A., & Deutsch, C. J. (1992). Evidence for voltage modulation of IL-2 production in mitogen-stimulated human peripheral blood lymphocytes. Journal of Immunology, 149, 3784–3794.

    CAS  Google Scholar 

  44. Lin, C. S., Boltz, R. C., Blake, J. T., et al. (1993). Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. The Journal of Experimental Medicine, 177, 637–645.

    Article  PubMed  CAS  Google Scholar 

  45. Price, M., Lee, S. C., & Deutsch, C. (1989). Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 86, 10171–10175.

    Article  PubMed  CAS  Google Scholar 

  46. Amigorena, S., Choquet, D., Teillaud, J. L., Korn, H., & Fridman, W. H. (1990). Ion channel blockers inhibit B cell activation at a precise stage of the G1 phase of the cell cycle. Possible involvement of K+ channels. Journal of Immunology, 144, 2038–2045.

    CAS  Google Scholar 

  47. Lee, S. C., Sabath, D. E., Deutsch, C., & Prystowsky, M. B. (1986). Increased voltage-gated potassium conductance during interleukin 2-stimulated proliferation of a mouse helper T lymphocyte clone. Journal of Cell Biology, 102, 1200–1208.

    Article  PubMed  CAS  Google Scholar 

  48. Cahalan, M. D., & Chandy, K. G. (1997). Ion channels in the immune system as targets for immunosuppression. Current Opinion in Biotechnology, 8, 749–756.

    Article  PubMed  CAS  Google Scholar 

  49. Deutsch, C., Krause, D., & Lee, S. C. (1986). Voltage-gated potassium conductance in human T-lymphocytes stimulated with phorbol ester. Journal of Physiology, 372, 405–423.

    PubMed  CAS  Google Scholar 

  50. Ghanshani, S., Wulff, H., Miller, M. J., et al. (2000). Up-regulation of the IKCa1 potassium channel during T-cell activation: Molecular mechanism and functional consequences. Journal of Biological Chemistry, 275, 37137–37149.

    Article  PubMed  CAS  Google Scholar 

  51. Grissmer, S., Nguyen, A. N., & Cahalan, M. D. (1993). Calcium-activated potassium channels in resting and activated human T lymphocytes: Expression levels, calcium dependence, ion selectivity, and pharmacology. Journal of General Physiology, 102, 601–630.

    Article  PubMed  CAS  Google Scholar 

  52. Khanna, R., Change, M. C., Joiner, W. J., Kaczmarek, L. K., & Schlichter, L. C. (1999). hSK4/hIK1, a calmodulin-binding K(Ca) channel in human T lymphocytes. Roles in proliferation and volume regulation. Journal of Biological Chemistry, 274, 14838–14849.

    Article  PubMed  CAS  Google Scholar 

  53. Kim, C. F., & Dirks, P. B. (2008). Cancer and stem cell biology: How tightly intertwined? Cell Stem Cell, 3, 147–150.

    Article  PubMed  CAS  Google Scholar 

  54. Normile, D. (2002). Cell proliferation. Common control for cancer, stem cells. Science, 298, 1869.

    Article  PubMed  CAS  Google Scholar 

  55. Wonderlin, W. F., Woodfork, K. A., & Strobl, J. S. (1995). Changes in membrane potential during the progression of MCF-7 human mammary tumor cell through the cell cycle. Journal of Cellular Physiology, 165, 177–185.

    Article  PubMed  CAS  Google Scholar 

  56. Woodfork, K. A., Wonderlin, W. F., Peterson, V. A., & Strobl, J. S. (1995). Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. Journal of Cellular Physiology, 162, 163–171.

    Article  PubMed  CAS  Google Scholar 

  57. Klimatcheva, E., & Wonderlin, W. F. (1999). An ATP-sensitive K+ current that regulates progression through early G1 phase of the cell cycle in MCF-7 human breast cancer cells. Journal of Membrane Biology, 171, 35–46.

    Article  PubMed  CAS  Google Scholar 

  58. Ouadid-Ahidouch, H., Chaussade, F., Roudbaraki, M., et al. (2000). Kv1.1 K+ channels identification in human breast carcinoma cells: Involvement in cell proliferation. Biochemical and Biophysical Research Communications, 278, 272–277.

    Article  PubMed  CAS  Google Scholar 

  59. Ouadid-Ahidouch, H., Le Bourhis, X., Roudbaraki, M., Toillon, R. A., Delcourt, P., & Prevarskaya, N. (2001). Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: Possible Involvement of a h-ether.a-gogo K+ channel. Receptors and Channels, 7, 345–356.

    PubMed  CAS  Google Scholar 

  60. Ouadid-Ahidouch, H., Roudbaraki, M., Ahidouch, A., Delcourt, P., & Prevarskaya, N. (2004). Cell-cycle-dependent expression of the large Ca2+-activated K+ channels in breast cancer cells. Biochemical and Biophysical Research Communications, 316, 244–251.

    Article  PubMed  CAS  Google Scholar 

  61. Ouadid-Ahidouch, H., Roudbaraki, M., Delcourt, P., Ahidouch, A., Joury, N., & Prevarskaya, N. (2004). Functional and molecular identification of intermediate-conductance Ca 2+-activated K+ channels in breast cancer cells: Association with cell cycle progression. American Journal of Physiology. Cell Physiology, 287, C125–C134.

    Article  PubMed  CAS  Google Scholar 

  62. Ouadid-Ahidouch, H., & Ahidouch, A. (2008). K+ channel expression in human breast cancer cells: Involvement in cell cycle regulation and carcinogenesis. Journal of Membrane Biology, 221, 1–6.

    Article  PubMed  CAS  Google Scholar 

  63. MacFarlane, S. N., & Sontheimer, H. (2000). Modulation of Kv1.5 currents by Src tyrosine phosphorylation: Potential role in the differentiation of astrocytes. Journal of Neuroscience, 20, 5245–5253.

    PubMed  CAS  Google Scholar 

  64. Sontheimer, H. (1994). Voltage-dependent ion channels in glial cells. GLIA, 11, 156–172.

    Article  PubMed  CAS  Google Scholar 

  65. Li, L., Head, V., & Timpe, L. C. (2001). Identification of an inward rectifier potassium channel gene expressed in mouse cortical astrocytes. GLIA, 33, 57–71.

    Article  PubMed  CAS  Google Scholar 

  66. Higashimori, H., & Sontheimer, H. (2007). Role of Kir4.1 channels in growth control of glia. GLIA, 55, 1668–1679.

    Article  PubMed  Google Scholar 

  67. Yasuda, T., Bartlett, P. F., & Adams, D. J. (2008). Kir and Kv channels regulate electrical properties and proliferation of adult neural precursor cells. Molecular and Cellular Neurosciences, 37, 284–297.

    Article  PubMed  CAS  Google Scholar 

  68. Wang, K., Xue, T., Tsang, S. Y., et al. (2005). Electrophysiological properties of pluripotent human and mouse embryonic stem cells. Stem Cells, 23, 1526–1534.

    Article  PubMed  CAS  Google Scholar 

  69. Morokuma, J., Blackiston, D., Adams, D. S., Seebohm, G., Trimmer, B., & Levin, M. (2008). Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 16608–16613.

    Article  PubMed  CAS  Google Scholar 

  70. Ferletta, M., Uhrbom, L., Olofsson, T., Ponten, F., & Westermark, B. (2007). Sox10 has a broad expression pattern in gliomas and enhances platelet-derived growth factor-B-induced gliomagenesis. Molecular Cancer Research, 5, 891–897.

    Article  PubMed  CAS  Google Scholar 

  71. Bannykh, S. I., Stolt, C. C., Kim, J., Perry, A., & Wegner, M. (2006). Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas. Journal of Neuro-oncology, 76, 115–127.

    Article  PubMed  CAS  Google Scholar 

  72. Martin, T. A., Goyal, A., Watkins, G., & Jiang, W. G. (2005). Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Annals of Surgical Oncology, 12, 488–496.

    Article  PubMed  Google Scholar 

  73. Kurrey, N. K., Amit, K., & Bapat, S. A. (2005). Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecologic Oncology, 97, 155–165.

    Article  PubMed  CAS  Google Scholar 

  74. Adams, D. S., Masi, A., & Levin, M. (2007). H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development, 134, 1323–1335.

    Article  PubMed  CAS  Google Scholar 

  75. Miller, J. P., Yeh, N., Vidal, A., & Koff, A. (2007). Interweaving the cell cycle machinery with cell differentiation. Cell Cycle, 6, 2932–2938.

    PubMed  CAS  Google Scholar 

  76. Arcangeli, A., Bianchi, L., Becchetti, A., et al. (1995). A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. Journal of Physiology, 489, 455–471.

    PubMed  CAS  Google Scholar 

  77. Arcangeli, A., Rosati, B., Cherubini, A., et al. (1998). Long term exposure to retinoic acid induces the expression of IRK1 channels in HERG channel-endowed neuroblastoma cells. Biochemical and Biophysical Research Communications, 244, 706–711.

    Article  PubMed  CAS  Google Scholar 

  78. Arcangeli, A., Rosati, B., Cherubini, A., et al. (1997). HERG- and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and their derivatives. European Journal of Neuroscience, 9, 2596–2604.

    Article  PubMed  CAS  Google Scholar 

  79. Arcangeli, A., Rosati, B., Crociani, O., et al. (1999). Modulation of HERG current and herg gene expression during retinoic acid treatment of human neuroblastoma cells: Potentiating effects of BDNF. Journal of Neurobiology, 40, 214–225.

    Article  PubMed  CAS  Google Scholar 

  80. Biagiotti, T., D’Amico, M., Marzi, I., et al. (2006). Cell renewing in neuroblastoma: Electrophysiological and immunocytochemical characterization of stem cells and derivatives. Stem Cells, 24, 443–453.

    Article  PubMed  Google Scholar 

  81. Sun, W., Buzanska, L., Domanska-Janik, K., Salvi, R. J., & Stachowiak, M. K. (2005). Voltage-sensitive and ligand-gated channels in differentiating neural stem-like cells derived from the nonhematopoietic fraction of human umbilical cord blood. Stem Cells, 23, 931–945.

    Article  PubMed  CAS  Google Scholar 

  82. Cho, T., Bae, J. H., Choi, H. B., et al. (2002). Human neural stem cells: Electrophysiological properties of voltage-gated ion channels. NeuroReport, 13, 1447–1452.

    Article  PubMed  CAS  Google Scholar 

  83. Chafai, M., Louiset, E., Basille, M., et al. (2006). PACAP and VIP promote initiation of electrophysiological activity in differentiating embryonic stem cells. Annals of the New York Academy of Sciences, 1070, 185–189.

    Article  PubMed  CAS  Google Scholar 

  84. Van Kempen, M. J. A., Van Ginneken, A., De Grijs, I., et al. (2003). Expression of the electrophysiological system during murine embryonic stem cell cardiac differentiation. Cellular Physiology and Biochemistry, 13, 263–270.

    Article  PubMed  CAS  Google Scholar 

  85. Van Der Heyden, M. A. G., Van Kempen, M. J. A., Tsuji, Y., Rook, M. B., Jongsma, H. J., & Opthof, T. (2003). P19 embryonal carcinoma cells: A suitable model system for cardiac electrophysiological differentiation at the molecular and functional level. Cardiovascular Research, 58, 410–422.

    Article  PubMed  CAS  Google Scholar 

  86. Fioretti, B., Pietrangelo, T., Catacuzzeno, L., & Franciolini, F. (2005). Intermediate-conductance Ca2+-activated K+ channel is expressed in C2C12 myoblasts and is downregulated during myogenesis. American Journal of Physiology. Cell Physiology, 289, C89–C96.

    Article  PubMed  CAS  Google Scholar 

  87. Kubo, Y. (1991). Comparison of initial stages of muscle differentiation in rat and mouse myoblastic and mouse mesodermal stem cell lines. Journal of Physiology, 442, 743–759.

    PubMed  CAS  Google Scholar 

  88. Voets, T., Wei, L., De Smet, P., et al. (1997). Downregulation of volume-activated Cl- currents during muscle differentiation. American Journal of Physiology. Cell Physiology, 272, C667–C674.

    CAS  Google Scholar 

  89. Lesage, F., Attali, B., Lazdunski, M., & Barhanin, J. (1992). Developmental expression of voltage-sensitive K+ channels in mouse skeletal muscle and C2C12 cells. FEBS Letters, 310, 162–166.

    Article  PubMed  CAS  Google Scholar 

  90. Wieland, S. J., & Gong, Q. H. (1995). Modulation of a potassium conductance in developing skeletal muscle. American Journal of Physiology. Cell Physiology, 268, C490–C495.

    CAS  Google Scholar 

  91. Hamann, M., Widmer, H., Baroffio, A., et al. (1994). Sodium and potassium currents in freshly isolated and in proliferating human muscle satellite cells. Journal of Physiology, 475, 305–317.

    PubMed  CAS  Google Scholar 

  92. Bernheim, L., Liu, J. H., Hamann, M., Haenggeli, C. A., Fischer-Lougheed, J., & Bader, C. R. (1996). Contribution of a non-inactivating potassium current to the resting membrane potential of fusion-competent human myoblasts. Journal of Physiology, 493, 129–141.

    PubMed  CAS  Google Scholar 

  93. Bijlenga, P., Liu, J. H., Espinos, E., et al. (2000). T-type α1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proceedings of the National Academy of Sciences of the United States of America, 97, 7627–7632.

    Article  PubMed  CAS  Google Scholar 

  94. Bijlenga, P., Occhiodoro, T., Liu, J. H., Bader, C. R., Bernheim, L., & Fischer-Lougheed, J. (1998). An ether-a-go-go K+ current, I(h-eag), contributes to the hyperpolarization of human fusion-competent myoblasts. Journal of Physiology, 512, 317–323.

    Article  PubMed  CAS  Google Scholar 

  95. Fischer-Lougheed, J., Liu, J. H., Espinos, E., et al. (2001). Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. Journal of Cell Biology, 153, 677–685.

    Article  PubMed  CAS  Google Scholar 

  96. Liu, J. H., Bijlenga, P., Fischer-Lougheed, J., et al. (1998). Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion. Journal of Physiology, 510, 467–476.

    Article  PubMed  CAS  Google Scholar 

  97. Messenger, E. A., & Warner, A. E. (1979). The function of the sodium pump during differentiation of amphibian embryonic neurones. Journal of Physiology, 292, 85–105.

    PubMed  CAS  Google Scholar 

  98. Messenger, E. A., & Warner, A. E. (1976). The effect of inhibiting the sodium pump on the differentiation of nerve cells [proceedings]. Journal of Physiology, 263, 211P–212P.

    PubMed  CAS  Google Scholar 

  99. Konig, S., Hinard, V., Arnaudeau, S., et al. (2004). Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myoblast differentiation. Journal of Biological Chemistry, 279, 28187–28196.

    Article  PubMed  CAS  Google Scholar 

  100. Hinard, V., Belin, D., Konig, S., Bader, C. R., & Bernheim, L. (2008). Initiation of human myoblast differentiation via dephosphorylation of Kir2.1 K+ channels at tyrosine 242. Development, 135, 859–867.

    Article  PubMed  CAS  Google Scholar 

  101. Konig, S., Béguet, A., Bader, C. R., & Bernheim, L. (2006). The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion. Development, 133, 3107–3114.

    Article  PubMed  CAS  Google Scholar 

  102. Yin, Z., Tong, Y., Zhu, H., & Watsky, M. A. (2008). ClC-3 is required for LPA-activated Cl- current activity and fibroblast-to-myofibroblast differentiation. American Journal of Physiology. Cell Physiology, 294, C535–C542.

    Article  PubMed  CAS  Google Scholar 

  103. Shirihai, O., Attali, B., Dagan, D., & Merchav, S. (1998). Expression of two inward rectifier potassium channels is essential for differentiation of primitive human hematopoietic progenitor cells. Journal of Cellular Physiology, 177, 197–205.

    Article  PubMed  CAS  Google Scholar 

  104. Shirihai, O., Merchav, S., Attali, B., & Dagan, D. (1996). K+ channel antisense oligodeoxynucleotides inhibit cytokine-induced expansion of human hemopoietic progenitors. Pflugers Archiv, 431, 632–638.

    Article  PubMed  CAS  Google Scholar 

  105. Nakanishi, S., & Okazawa, M. (2006). Membrane potential-regulated Ca2+ signalling in development and maturation of mammalian cerebellar granule cells. Journal of Physiology, 575, 389–395.

    Article  PubMed  CAS  Google Scholar 

  106. Rossi, P., D’Angelo, E., Magistretti, J., Toselli, M., & Taglietti, V. (1994). Age dependent expression of high-voltage activated calcium currents during cerebellar granule cell development in situ. Pflugers Archiv, 429, 107–116.

    Article  PubMed  CAS  Google Scholar 

  107. Sato, M., Suzuki, K., Yamazaki, H., & Nakanishi, S. (2005). A pivotal role of calcineurin signaling in development and maturation of postnatal cerebellar granule cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 5874–5879.

    Article  PubMed  CAS  Google Scholar 

  108. Sundelacruz, S., Levin, M., & Kaplan, D. L. (2008). Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS ONE, 3, e3737.

    Article  PubMed  CAS  Google Scholar 

  109. Echeverri, K., & Tanaka, E. M. (2002). Mechanisms of muscle dedifferentiation during regeneration. Seminars in Cell & Developmental Biology, 13, 353–360.

    Article  CAS  Google Scholar 

  110. Odelberg, S. J. (2002). Inducing cellular dedifferentiation: A potential method for enhancing endogenous regeneration in mammals. Seminars in Cell & Developmental Biology, 13, 335–343.

    Article  CAS  Google Scholar 

  111. Chiabrera, A., Hinsenkamp, M., Pilla, A. A., et al. (1979). Cytofluorometry of electromagnetically controlled cell dedifferentiation. Journal of Histochemistry and Cytochemistry, 27, 375–381.

    PubMed  CAS  Google Scholar 

  112. Chiabrera, A., Viviani, R., Parodi, G., et al. (1980). Automated absorption image cytometry of electromagnetically exposed frog erythrocytes. Cytometry, 1, 42–48.

    Article  PubMed  CAS  Google Scholar 

  113. Harrington, D. B. (1972). Electrical stimulation of RNA and protein-synthesis in frog erythrocyte. Anatomical Record, 172, 325.

    Google Scholar 

  114. Harrington, D. B., & Becker, R. O. (1973). Electrical stimulation of RNA and protein synthesis in the frog erythrocyte. Experimental Cell Research, 76, 95–98.

    Article  PubMed  CAS  Google Scholar 

  115. Hinsenkamp, M., Chiabrera, A., Ryaby, J., Pilla, A. A., & Bassett, C. A. (1978). Cell behaviour and DNA modification in pulsing electromagnetic fields. Acta Orthopaedica Belgica, 44, 636–650.

    PubMed  CAS  Google Scholar 

  116. Balana, B., Nicoletti, C., Zahanich, I., et al. (2006). 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Research, 16, 949–960.

    Article  PubMed  CAS  Google Scholar 

  117. Ravens, U. (2006). Electrophysiological properties of stem cells. Herz, 31, 123–126.

    Article  PubMed  Google Scholar 

  118. Wenisch, S., Trinkaus, K., Hild, A., et al. (2006). Immunochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation. Bone, 38, 911–921.

    Article  PubMed  CAS  Google Scholar 

  119. Biagiotti, T., D’Amico, M., Marzi, I., et al. (2006). Cell renewing in neuroblastoma: electrophysiological and immunocytochemical characterization of stem cells and derivatives. Stem Cells, 24, 443–453.

    Article  PubMed  Google Scholar 

  120. Wang, K., Xue, T., Tsang, S. Y., et al. (2005). Electrophysiological properties of pluripotent human and mouse embryonic stem cells. Stem Cells, 23, 1526–1534.

    Article  PubMed  CAS  Google Scholar 

  121. Flanagan, L. A., Lu, J., Wang, L., et al. (2007). Unique dielectric properties distinguish stem cells and their differentiated progeny. Stem Cells.

  122. Gersdorff Korsgaard, M. P., Christophersen, P., Ahring, P. K., & Olesen, S. P. (2001). Identification of a novel voltage-gated Na+ channel rNa(v)1.5a in the rat hippocampal progenitor stem cell line HiB5. Pflugers Archiv, 443, 18–30.

    Article  PubMed  CAS  Google Scholar 

  123. Heubach, J. F., Graf, E. M., Leutheuser, J., et al. (2004). Electrophysiological properties of human mesenchymal stem cells. Journal of Physiology, 554, 659–672.

    Article  PubMed  CAS  Google Scholar 

  124. Li, G. R., Sun, H., Deng, X., & Lau, C. P. (2005). Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells, 23, 371–382.

    Article  PubMed  CAS  Google Scholar 

  125. Bai, X., Ma, J., Pan, Z., et al. (2007). Electrophysiological properties of human adipose tissue-derived stem cells. American Journal of Physiology. Cell Physiology, 293(5), C1539–C1550.

    Article  PubMed  CAS  Google Scholar 

  126. Cai, J., Cheng, A., Luo, Y., et al. (2004). Membrane properties of rat embryonic multipotent neural stem cells. Journal of Neurochemistry, 88, 212–226.

    Article  PubMed  CAS  Google Scholar 

  127. Park, K. S., Jung, K. H., Kim, S. H., et al. (2007). Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein. Stem Cells, 25, 2044–2052.

    Article  PubMed  CAS  Google Scholar 

  128. Yu, K., Ruan, D. Y., & Ge, S. Y. (2002). Three electrophysiological phenotypes of cultured human umbilical vein endothelial cells. General Physiology and Biophysics, 21, 315–326.

    PubMed  CAS  Google Scholar 

  129. Baksh, D., Song, L., & Tuan, R. S. (2004). Adult mesenchymal stem cells: Characterization, differentiation, and application in cell and gene therapy. Journal of Cellular and Molecular Medicine, 8, 301–316.

    Article  PubMed  CAS  Google Scholar 

  130. Levin, M. (2007). Large-scale biophysics: Ion flows and regeneration. Trends in Cell Biology, 17, 261–270.

    Article  PubMed  CAS  Google Scholar 

  131. Constantinescu, S. N. (2000). Stem cell generation and choice of fate: Role of cytokines and cellular microenvironment. Journal of Cellular and Molecular Medicine, 4, 233–248.

    Article  PubMed  CAS  Google Scholar 

  132. Bianchi, G., Muraglia, A., Daga, A., Corte, G., Cancedda, R., & Quarto, R. (2001). Microenvironment and stem properties of bone marrow-derived mesenchymal cells. Wound Repair Regen, 9, 460–466.

    Article  PubMed  CAS  Google Scholar 

  133. Kasemeier-Kulesa, J. C., Teddy, J. M., Postovit, L. M., et al. (2008). Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment. Developmental Dynamics, 237, 2657–2666.

    Article  PubMed  Google Scholar 

  134. Heese, O., Disko, A., Zirkel, D., Westphal, M., & Lamszus, K. (2005). Neural stem cell migration toward gliomas in vitro. Neuro-oncology, 7, 476–484.

    Article  PubMed  CAS  Google Scholar 

  135. Jeon, J. Y., An, J. H., Kim, S. U., Park, H. G., & Lee, M. A. (2008). Migration of human neural stem cells toward an intracranial glioma. Experimental & Molecular Medicine, 40, 84–91.

    Article  CAS  Google Scholar 

  136. Quesenberry, P. J., & Becker, P. S. (1998). Stem cell homing: Rolling, crawling, and nesting. Proceedings of the National Academy of Sciences of the United States of America, 95, 15155–15157.

    Article  PubMed  CAS  Google Scholar 

  137. Whetton, A. D., & Graham, G. J. (1999). Homing and mobilization in the stem cell niche. Trends in Cell Biology, 9, 233–238.

    Article  PubMed  CAS  Google Scholar 

  138. Krause, D. S., Theise, N. D., Collector, M. I., et al. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105, 369–377.

    Article  PubMed  CAS  Google Scholar 

  139. Penn, M. S., Zhang, M., Deglurkar, I., & Topol, E. J. (2004). Role of stem cell homing in myocardial regeneration. International Journal of Cardiology, 95(Suppl 1), S23–S25.

    Article  PubMed  Google Scholar 

  140. Chute, J. P. (2006). Stem cell homing. Current Opinion in Hematology, 13, 399–406.

    Article  PubMed  Google Scholar 

  141. Sanchez Alvarado, A. (2004). Planarians. Current Biology, 14, R737–R738.

    Article  PubMed  CAS  Google Scholar 

  142. Reddien, P. W., & Sanchez Alvarado, A. (2004). Fundamentals of planarian regeneration. Annual Review of Cell and Developmental Biology, 20, 725–757.

    Article  PubMed  CAS  Google Scholar 

  143. Oviedo, N., & Levin, M. (2008). The planarian regeneration model as a context for the study of drug effects and mechanisms. In R. B. Raffa & S. M. Rawls (Eds.), Planaria: A model for drug action and abuse. Austin: RG Landes Co.

    Google Scholar 

  144. Sanchez Alvarado, A. (2003). The freshwater planarian Schmidtea mediterranea: Embryogenesis, stem cells and regeneration. Current Opinion in Genetics and Development, 13, 438–444.

    Article  PubMed  CAS  Google Scholar 

  145. Salo, E., & Baguna, J. (1985). Cell movement in intact and regenerating planarians. Quantitation using chromosomal, nuclear and cytoplasmic markers. Journal of Embryology and Experimental Morphology, 89, 57–70.

    PubMed  CAS  Google Scholar 

  146. Oviedo, N. J., Pearson, B. J., Levin, M., & Sanchez Alvarado, A. (2008). Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling. Disease Models & Mechanisms, 1, 131–143.

    Article  CAS  Google Scholar 

  147. Nogi, T., & Levin, M. (2005). Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Developmental Biology, 287, 314–335.

    Article  PubMed  CAS  Google Scholar 

  148. Oviedo, N. J., & Levin, M. (2007). smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development, 134, 3121–3131.

    Article  PubMed  CAS  Google Scholar 

  149. Wong, R. C., Pera, M. F., & Pebay, A. (2008). Role of gap junctions in embryonic and somatic stem cells. Stem Cell Reviews, 4, 283–292.

    Article  PubMed  CAS  Google Scholar 

  150. Spray, D., Harris, A., & Bennett, M. (1981). Equilibrium properties of a voltage-dependent junctional conductance. Journal of General Physiology, 77, 77–93.

    Article  PubMed  CAS  Google Scholar 

  151. Harris, A., Spray, D., & Bennett, M. (1983). Control of intercellular communication by voltage dependence of gap junctional conductance. Journal of Neuroscience, 3, 79–100.

    PubMed  CAS  Google Scholar 

  152. Menichella, D. M., Majdan, M., Awatramani, R., et al. (2006). Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. Journal of Neuroscience, 26, 10984–10991.

    Article  PubMed  CAS  Google Scholar 

  153. Verselis, V., Trexler, E., Bargiello, T., & Bennett, M. (1997). Studies of voltage gating of gap junctions and hemichannels formed by connexin proteins. In R. Latorre, J. Saez (Eds.), From ion channels to cell-to-cell conversations (pp. 323–347). New York.

  154. Morokuma, J., Blackiston, D., Adams, D. S., Seebohm, G., Trimmer, B., & Levin, M. (2008). Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 16608–16613.

    Article  PubMed  CAS  Google Scholar 

  155. Djamgoz, M. B. A., Mycielska, M., Madeja, Z., Fraser, S. P., & Korohoda, W. (2001). Directional movement of rat prostate cancer cells in direct-current electric field: Involvement of voltage-gated Na+ channel activity. Journal of Cell Science, 114, 2697–2705.

    PubMed  CAS  Google Scholar 

  156. Brackenbury, W. J., & Djamgoz, M. B. (2006). Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. Journal of Physiology, 573, 343–356.

    Article  PubMed  CAS  Google Scholar 

  157. Gruler, H., & Nuccitelli, R. (1991). Neural crest cell galvanotaxis: new data and a novel approach to the analysis of both galvanotaxis and chemotaxis. Cell Motility and the Cytoskeleton, 19, 121–133.

    Article  PubMed  CAS  Google Scholar 

  158. Nuccitelli, R., & Erickson, C. A. (1983). Embryonic cell motility can be guided by physiological electric fields. Experimental Cell Research, 147, 195–201.

    Article  PubMed  CAS  Google Scholar 

  159. Nuccitelli, R., & Smart, T. (1989). Extracellular calcium levels strongly influence neural crest cell galvanotaxis. Biological Bulletin, 176, 130–135.

    Article  CAS  Google Scholar 

  160. Adams, D. S., Robinson, K. R., Fukumoto, T., et al. (2006). Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development, 133, 1657–1671.

    Article  PubMed  CAS  Google Scholar 

  161. Denker, S. P., & Barber, D. L. (2002). Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. Journal of Cell Biology, 159, 1087–1096.

    Article  PubMed  CAS  Google Scholar 

  162. Levin, M., Buznikov, G. A., & Lauder, J. M. (2006). Of minds and embryos: Left-right asymmetry and the serotonergic controls of pre-neural morphogenesis. Developmental Neuroscience, 28, 171–185.

    Article  PubMed  CAS  Google Scholar 

  163. Shi, H., Halvorsen, Y. D., Ellis, P. N., Wilkison, W. O., & Zemel, M. B. (2000). Role of intracellular calcium in human adipocyte differentiation. Physiological Genomics, 2000, 75–82.

    Google Scholar 

  164. Zayzafoon, M. (2006). Calcium/calmodulin signaling controls osteoblast growth and differentiation. Journal of Cellular Biochemistry, 97, 56–70.

    Article  PubMed  CAS  Google Scholar 

  165. Munaron, L., Antoniotti, S., & Lovisolo, D. (2004). Intracellular calcium signals and control of cell proliferation: How many mechanisms? Journal of Cellular and Molecular Medicine, 8, 161–168.

    Article  PubMed  CAS  Google Scholar 

  166. Whitaker, M. (2006). Calcium microdomains and cell cycle control. Cell Calcium, 40, 585–592.

    Article  PubMed  CAS  Google Scholar 

  167. Soliman, E. M., Rodrigues, M. A., Gomes, D. A., et al. (2009). Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression. Cell Calcium, 45, 284–292.

    Article  PubMed  CAS  Google Scholar 

  168. Palma, V., Kukuljan, M., & Mayor, R. (2001). Calcium mediates dorsoventral patterning of mesoderm in Xenopus. Current Biology, 11, 1606–1610.

    Article  PubMed  CAS  Google Scholar 

  169. Sun, S., Liu, Y., Lipsky, S., & Cho, M. (2007). Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB Journal, 21, 1472–1480.

    Article  PubMed  CAS  Google Scholar 

  170. Trollinger, D. R., Isseroff, R. R., & Nuccitelli, R. (2002). Calcium channel blockers inhibit galvanotaxis in human keratinocytes. Journal of Cellular Physiology, 193, 1–9.

    Article  PubMed  CAS  Google Scholar 

  171. Albrieux, M., & Villaz, M. (2000). Bilateral asymmetry of the inositol trisphosphate-mediated calcium signaling in two-cell ascidian embryos. Biology of the Cell, 92, 277–284.

    Article  PubMed  CAS  Google Scholar 

  172. Linask, K. K., Han, M. D., Artman, M., & Ludwig, C. A. (2001). Sodium-calcium exchanger (NCX-1) and calcium modulation: NCX protein expression patterns and regulation of early heart development. Developmental Dynamics, 221, 249–264.

    Article  PubMed  CAS  Google Scholar 

  173. McGrath, J., Somlo, S., Makova, S., Tian, X., & Brueckner, M. (2003). Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell, 114, 61–73.

    Article  PubMed  CAS  Google Scholar 

  174. Raya, A., Kawakami, Y., Rodriguez-Esteban, C., et al. (2004). Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature, 427, 121–128.

    Article  PubMed  CAS  Google Scholar 

  175. Schneider, I., Houston, D. W., Rebagliati, M. R., & Slusarski, D. C. (2007). Calcium fluxes in dorsal forerunner cells antagonize {beta}-catenin and alter left-right patterning. Development.

  176. Slusarski, D. C., & Pelegri, F. (2007). Calcium signaling in vertebrate embryonic patterning and morphogenesis. Developmental Biology, 307, 1–13.

    Article  PubMed  CAS  Google Scholar 

  177. Webb, S. E., & Miller, A. L. (2000). Calcium signalling during zebrafish embryonic development. Bioessays, 22, 113–123.

    Article  PubMed  CAS  Google Scholar 

  178. Jaffe, L. F. (1999). Organization of early development by calcium patterns. Bioessays, 21, 657–667.

    Article  PubMed  CAS  Google Scholar 

  179. Jaffe, L. (1995). Calcium waves and development. In Calcium waves, gradients and oscillations (pp. 4–17). Chichester: CIBA Foundation.

  180. Konig, S., Beguet, A., Bader, C. R., & Bernheim, L. (2006). The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion. Development, 133, 3107–3114.

    Article  PubMed  CAS  Google Scholar 

  181. Nilius, B., Schwarz, G., & Droogmans, G. (1993). Control of intracellular calcium by membrane potential in human melanoma cells. American Journal of Physiology, 265, C1501–C1510.

    PubMed  CAS  Google Scholar 

  182. Nilius, B., & Wohlrab, W. (1992). Potassium channels and regulation of proliferation of human melanoma cells. Journal of Physiology, 445, 537–548.

    PubMed  CAS  Google Scholar 

  183. Sasaki, M., Gonzalez-Zulueta, M., Huang, H., et al. (2000). Dynamic regulation of neuronal NO synthase transcription by calcium influx through a CREB family transcription factor-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 97, 8617–8622.

    Article  PubMed  CAS  Google Scholar 

  184. Bidaud, I., Mezghrani, A., Swayne, L. A., Monteil, A., & Lory, P. (2006). Voltage-gated calcium channels in genetic diseases. Biochimica et Biophysica Acta, 1763, 1169–1174.

    PubMed  CAS  Google Scholar 

  185. Cherubini, A., Hofmann, G., Pillozzi, S., et al. (2005). Human ether-a-go-go-related gene 1 channels are physically linked to beta1 integrins and modulate adhesion-dependent signaling. Molecular Biology of the Cell, 16, 2972–2983.

    Article  PubMed  CAS  Google Scholar 

  186. Arcangeli, A., & Becchetti, A. (2006). Complex functional interaction between integrin receptors and ion channels. Trends in Cell Biology, 16, 631–639.

    Article  PubMed  CAS  Google Scholar 

  187. Liu, J., DeYoung, S. M., Zhang, M., Cheng, A., & Saltiel, A. R. (2005). Changes in integrin expression during adipocyte differentiation. Cell Metabolism, 2, 165–177.

    Article  PubMed  CAS  Google Scholar 

  188. Meyers, V. E., Zayzafoon, M., Gonda, S. R., Gathings, W. E., & McDonald, J. M. (2004). Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. Journal of Cellular Biochemistry, 93, 697–707.

    Article  PubMed  CAS  Google Scholar 

  189. Nesti, L. J., Caterson, E. J., Wang, M., et al. (2002). TGF-β1 calcium signaling increases α5 integrin expression in osteoblasts. Journal of Orthopaedic Research, 20, 1042–1049.

    Article  PubMed  CAS  Google Scholar 

  190. Iwasaki, H., Murata, Y., Kim, Y., et al. (2008). A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4, 5-bisphosphate. Proceedings of the National Academy of Sciences of the United States of America, 105, 7970–7975.

    Article  PubMed  CAS  Google Scholar 

  191. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K., & Okamura, Y. (2005). Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature, 435, 1239–1243.

    Article  PubMed  CAS  Google Scholar 

  192. Murata, Y., & Okamura, Y. (2007). Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. Journal of Physiology, 583, 875–889.

    Article  PubMed  CAS  Google Scholar 

  193. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K., & Okamura, Y. (2005). Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature, 435, 1239–1243.

    Article  PubMed  CAS  Google Scholar 

  194. Adams, D. S. (2008). A new tool for tissue engineers: Ions as regulators of morphogenesis during development and regeneration. Tissue Engineering. Part A, 14, 1461–1468.

    Article  PubMed  CAS  Google Scholar 

  195. Chen, J. G., & Rudnick, G. (2000). Permeation and gating residues in serotonin transporter. Proceedings of the National Academy of Sciences of the United States of America, 97, 1044–1049.

    Article  PubMed  CAS  Google Scholar 

  196. Fukumoto, T., Blakely, R., & Levin, M. (2005). Serotonin transporter function is an early step in left-right patterning in chick and frog embryos. Developmental Neuroscience, 27, 349–363.

    Article  PubMed  CAS  Google Scholar 

  197. Hegle, A. P., Marble, D. D., & Wilson, G. F. (2006). A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 103, 2886–2891.

    Article  PubMed  CAS  Google Scholar 

  198. Yang, S. J., Liang, H. L., Ning, G., & Wong-Riley, M. T. (2004). Ultrastructural study of depolarization-induced translocation of NRF-2 transcription factor in cultured rat visual cortical neurons. European Journal of Neuroscience, 19, 1153–1162.

    Article  PubMed  Google Scholar 

  199. Li, L., Liu, F., Salmonsen, R. A., et al. (2002). PTEN in neural precursor cells: Regulation of migration, apoptosis, and proliferation. Molecular and Cellular Neurosciences, 20, 21–29.

    Article  PubMed  CAS  Google Scholar 

  200. Poo, M. M., & Robinson, K. R. (1977). Electrophoresis of concanavalin-a receptors along embryonic muscle-cell membrane. Nature, 265, 602–605.

    Article  PubMed  CAS  Google Scholar 

  201. Cooper, M. S., Miller, J. P., & Fraser, S. E. (1989). Electrophoretic repatterning of charged cytoplasmic molecules within tissues coupled by gap junctions by externally applied electric fields. Developmental Biology, 132, 179–188.

    Article  PubMed  CAS  Google Scholar 

  202. Fang, K. S., Ionides, E., Oster, G., Nuccitelli, R., & Isseroff, R. R. (1999). Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields. Journal of Cell Science, 112, 1967–1978.

    PubMed  CAS  Google Scholar 

  203. Giugni, T. D., Braslau, D. L., & Haigler, H. T. (1987). Electric field-induced redistribution and postfield relaxation of epidermal growth factor receptors on A431 cells. Journal of Cell Biology, 104, 1291–1297.

    Article  PubMed  CAS  Google Scholar 

  204. Stollberg, J., & Fraser, S. E. (1988). Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation. Journal of Cell Biology, 107, 1397–1408.

    Article  PubMed  CAS  Google Scholar 

  205. Orida, N., & Poo, M. M. (1978). Electrophoretic movement and localisation of acetylcholine receptors in the embryonic muscle cell membrane. Nature, 275, 31–35.

    Article  PubMed  CAS  Google Scholar 

  206. Fukumoto, T., Kema, I. P., & Levin, M. (2005). Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Current Biology, 15, 794–803.

    Article  PubMed  CAS  Google Scholar 

  207. Woodruff, R., & Telfer, W. (1980). Electrophoresis of proteins in intercellular bridges. Nature, 286, 84–86.

    Article  PubMed  CAS  Google Scholar 

  208. Korohoda, W., Mycielska, M., Janda, E., & Madeja, Z. (2000). Immediate and long-term galvanotactic responses of Amoeba proteus to dc electric fields. Cell Motility and the Cytoskeleton, 45, 10–26.

    Article  PubMed  CAS  Google Scholar 

  209. Tao, Y., Yan, D., Yang, Q., Zeng, R., & Wang, Y. (2006). Low K+ promotes NF-kappaB/DNA binding in neuronal apoptosis induced by K+ loss. Molecular and Cellular Biology, 26, 1038–1050.

    Article  PubMed  CAS  Google Scholar 

  210. Gillies, R., Martinez-Zaguilan, R., Peterson, E., & Perona, R. (1992). Role of intracellular pH in mammalian cell proliferation. Cellular Physiology and Biochemistry, 2, 159–179.

    Article  CAS  Google Scholar 

  211. Uzman, J. A., Patil, S., Uzgare, A. R., & Sater, A. K. (1998). The role of intracellular alkalinization in the establishment of anterior neural fate in Xenopus. Developmental Biology, 193, 10–20.

    Article  PubMed  CAS  Google Scholar 

  212. Schuldiner, S., & Rozengurt, E. (1982). Na+/H+ antiport in Swiss 3 T3 cells: Mitogenic stimulation leads to cytoplasmic alkalinization. Proceedings of the National Academy of Sciences of the United States of America, 79, 7778–7782.

    Article  PubMed  CAS  Google Scholar 

  213. Zhong, M., Kim, S. J., & Wu, C. (1999). Sensitivity of Drosophila heat shock transcription factor to low pH. Journal of Biological Chemistry, 274, 3135–3140.

    Article  PubMed  CAS  Google Scholar 

  214. Lin, H., Xiao, J., Luo, X., et al. (2007). Overexpression HERG K(+) channel gene mediates cell-growth signals on activation of oncoproteins SP1 and NF-kappaB and inactivation of tumor suppressor Nkx3.1. Journal of Cellular Physiology, 212, 137–147.

    Article  PubMed  CAS  Google Scholar 

  215. Chudotvorova, I., Ivanov, A., Rama, S., et al. (2005). Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses. Journal of Physiology, 566, 671–679.

    Article  PubMed  CAS  Google Scholar 

  216. Burrone, J., O’Byrne, M., & Murthy, V. N. (2002). Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature, 420, 414–418.

    Article  PubMed  CAS  Google Scholar 

  217. Beech, J. A. (1997). Bioelectric potential gradients may initiate cell cycling: ELF and zeta potential gradients may mimic this effect. Bioelectromagnetics, 18, 341–348.

    Article  PubMed  CAS  Google Scholar 

  218. Redmann, K., Jenssen, H. L., & Kohler, H. J. (1974). Experimental and functional changes in transmembrane potential and zeta potential of single cultured cells. Experimental Cell Research, 87, 281–289.

    Article  PubMed  CAS  Google Scholar 

  219. Sherbet, G. V., & Lakshmi, M. S. (1974). The surface properties of some human intracranial tumour cell lines in relation to their malignancy. Oncology, 29, 335–347.

    Article  PubMed  CAS  Google Scholar 

  220. James, A. M., Ambrose, E. J., & Lowick, J. H. (1956). Differences between the electrical charge carried by normal and homologous tumour cells. Nature, 177, 576–577.

    Article  PubMed  CAS  Google Scholar 

  221. Weihua, Z., Tsan, R., Schroit, A. J., & Fidler, I. J. (2005). Apoptotic cells initiate endothelial cell sprouting via electrostatic signaling. Cancer Research, 65, 11529–11535.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

S.S. would like to thank the NSF for funding through the Graduate Research Fellowship Program. D.K. is supported by the NIH through the Tissue Engineering Resource Center (P41 EB002520). M.L. is supported by grants from the NHTSA (DTNH22-06-G-00001) and NIH (GM078484, HD055850-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundelacruz, S., Levin, M. & Kaplan, D.L. Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation. Stem Cell Rev and Rep 5, 231–246 (2009). https://doi.org/10.1007/s12015-009-9080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9080-2

Keywords

Navigation