Skip to main content

Advertisement

Log in

Climate change effects on phytoplankton depend on cell size and food web structure

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We investigated the effects of warming on a natural phytoplankton community from the Baltic Sea, based on six mesocosm experiments conducted 2005–2009. We focused on differences in the dynamics of three phytoplankton size groups which are grazed to a variable extent by different zooplankton groups. While small-sized algae were mostly grazer-controlled, light and nutrient availability largely determined the growth of medium- and large-sized algae. Thus, the latter groups dominated at increased light levels. Warming increased mesozooplankton grazing on medium-sized algae, reducing their biomass. The biomass of small-sized algae was not affected by temperature, probably due to an interplay between indirect effects spreading through the food web. Thus, under the higher temperature and lower light levels anticipated for the next decades in the southern Baltic Sea, a higher share of smaller phytoplankton is expected. We conclude that considering the size structure of the phytoplankton community strongly improves the reliability of projections of climate change effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aberle N, Lengfellner K, Sommer U (2007) Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150:668–681. doi:10.1007/s00442-006-0540-y

    Article  CAS  Google Scholar 

  • BACC Author Team (2008) Assessment of climate change for the Baltic Sea Basin. Springer-Verlag, Berlin

    Google Scholar 

  • Barber RT, Hiscock MR (2006) A rising tide lifts all phytoplankton: growth response of other phytoplankton taxa in diatom-dominated blooms. Global Biogeochem Cycles 20:GB4S03. doi:10.1029/2006GB002726

  • Barton BT, Beckerman AP, Schmitz OJ (2009) Climate warming strengthens indirect interactions in an old-field food web. Ecology 90:2346–2351. doi:10.1890/08-2254.1

    Article  Google Scholar 

  • Baumert HZ, Petzoldt T (2008) The role of temperature, cellular quota and nutrient concentrations for photosynthesis, growth and light-dark acclimation in phytoplankton. Limnologica 38:313–326. doi:10.1016/j.limno.2008.06.002

    Article  CAS  Google Scholar 

  • Beveridge OS, Petchey OL, Humphries S (2010a) Direct and indirect effects of temperature on the population dynamics and ecosystem functioning of aquatic microbial ecosystems. J Animal Ecol 79:1324–1331. doi:10.1111/j.1365-2656.2010.01741.x

    Article  Google Scholar 

  • Beveridge OS, Humphries S, Petchey OL (2010b) The interacting effects of temperature and food chain length on trophic abundance and ecosystem function. J Animal Ecol 79:693–700. doi:10.1111/j.1365-2656.2010.01662.x

    Article  Google Scholar 

  • Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over past century. Nature 466:591–596. doi:10.1038/nature09268

    Article  CAS  Google Scholar 

  • Bramm ME, Lassen MK, Liboriussen L, Richardson K, Ventura M, Jeppesen E (2009) The role of light for fish–zooplankton–phytoplankton interactions during winter in shallow lakes—a climate change perspective. Freshwater Biol 54:1093–1109. doi:10.1111/j.1365-2427.2008.02156.x

    Article  Google Scholar 

  • Brock TD (1981) Calculating solar radiation for ecological studies. Ecological modelling, 14rd edn, pp 1–19

  • Calbet A (2008) The trophic roles of microzooplankton in marine systems. ICES J Mar Sci 65:325–331. doi:10.1093/icesjms/fsn013

    Article  Google Scholar 

  • Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol 38:157–167. doi:10.3354/ame038157

    Article  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Nat Acad Sci USA 106:12788–12793. doi:10.1073/pnas.0902080106

    Article  CAS  Google Scholar 

  • Duffy JE, Stachowicz JJ (2006) Why biodiversity is important to oceanography: potential roles of genetic, species, and trophic diversity in pelagic ecosystem processes. Mar Ecol Prog Ser 311:179–189. doi:10.3354/meps311179

    Article  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137. doi:10.1093/plankt/fbp098

    Article  CAS  Google Scholar 

  • Gaedke U, Ruhenstroth-Bauer M, Wiegand I, Tirok K, Aberle N, Breithaupt P, Lengfellner K, Wohlers J, Sommer U (2010) Biotic interactions may overrule direct climate effects on spring phytoplankton dynamics. Glob Change Biol 16:1122–1136. doi:10.1111/j.1365-2486.2009.02009.x

    Article  Google Scholar 

  • Gargas E (1975) A manual for phytoplankton primary production studies in the Baltic. BMB Publishing, Horsholm, Danemark, Water Quality Institute 2

    Google Scholar 

  • Guinder VA, Popovich CA, Molinero JC, Perillo GME (2010) Long-term changes in phytoplankton phenology and community structure in the Bahίa Blanca Estuary, Argentina. Mar Biol 157:2703–2716. doi:10.1007/s00227-010-1530-5

    Article  Google Scholar 

  • Hansen B, Bjørnsen PK, Hansen PJ (1994) The size ratio between planktonic predators and their prey. Limnol Oceanogr 39:395–403

    Article  Google Scholar 

  • Hansen PJ, Bjørnsen PK, Hansen BW (1997) Zooplankton grazing and growth: scaling within the 2–2,000-μm body size range. Limnol Oceanogr 42:687–704

    Article  Google Scholar 

  • Henriksen P (2009) Long-term changes in the phytoplankton in the Kattegat, the Belt Sea, the Sound and the western Baltic Sea. J Sea Res 61:114–123. doi:10.1016/j.seares.2008.10.003

    Article  Google Scholar 

  • Hillebrand H, Dürselen CD, Kischtel K, Pollingher U (1999) Biovolume calculations for pelagic and benthic microalgae. J Phycol 35:403–424. doi:10.1046/j.1529-8817.1999.3520403.x

    Article  Google Scholar 

  • Hoekman D (2010) Turning up the heat: temperature influences the relative importance of top–down and bottom–up effects. Ecology 91:2819–2825. doi:10.1890/10-0260.1

    Article  Google Scholar 

  • Horn H, Horn W (2008) Bottom–up or top–down—how is the autotrophic picoplankton mainly controlled? Results of long-term investigations from two drinking water reservoirs of different trophic state. Limnologica 38:302–312. doi:10.1016/j.limno.2008.05.007

    Article  CAS  Google Scholar 

  • Ingrid G, Andersen T, Vadstein O (1996) Pelagic food webs and eutrophication of coastal waters: impact of grazers on algal communities. Mar Pollut Bull 33:22–35. doi:10.1016/S0025-326X(96)00134-8

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 996

    Google Scholar 

  • Irigoien X, Flynn KJ, Harris RP (2005) Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact? J Plankton Res 27:313–321. doi:10.1093/plankt/fbi011

    Article  Google Scholar 

  • Isla JA, Lengfellner K, Sommer U (2008) Physiological response of the copepod Pseudocalanus sp. in the Baltic Sea at different thermal scenarios. Glob Change Biol 14:895–906. doi:10.1111/j.1365-2486.2008.01531.x

    Article  Google Scholar 

  • Jakobsen HH, Halvorsen E, Hansen BW, Visser AW (2005) Effects of prey motility and concentration on feeding in Acartia tonsa and Temora longicornis: the importance of feeding modes. J Plankton Res 27:775–785. doi:10.1093/plankt/fbi051

    Article  Google Scholar 

  • Johansson M, Gorokhova E, Larsson U (2004) Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. J Plankton Res 26:67–80. doi:10.1093/plankt/fbg115

    Article  Google Scholar 

  • Juliano SA (2001) Nonlinear curve fitting: predation and functional response curves. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, Oxford, pp 178–196

    Google Scholar 

  • Kleppel GS (1993) On the diets of calanoid copepods. Mar Ecol Prog Ser 99:183–195

    Article  Google Scholar 

  • Lehmann A, Getzlaff K, Harlass J (2011) Detailed assessment of climate variability in the Baltic Sea area for the period 1958–2009. Climate Research 46:185–196. doi:10.3354/cr00876

    Article  Google Scholar 

  • Lewandowska A (2011) Effects of warming on the phytoplankton succession and trophic interactions. Dissertation, Kiel University, Germany

    Google Scholar 

  • Lewandowska A, Sommer U (2010) Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Mar Ecol Prog Ser 405:101–111. doi:10.3354/meps08520

    Article  CAS  Google Scholar 

  • Litchman E, Pinto PT, Klausmeier CA, Thomas MK, Yoshiyama K (2010) Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653:15–28. doi:10.1007/s10750-010-0341-5

    Article  CAS  Google Scholar 

  • Löder MGJ, Kraberg AC, Aberle N, Peters S, Wiltshire KH (2011a) Dinoflagellates and ciliates at Helgoland Roads, North Sea. Helgoland Marine Research. doi. doi:10.1007/s10152-010-0242-z

    Google Scholar 

  • Löder MGJ, Meunier C, Wiltshire KH, Boersma M, Aberle N (2011b) The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Mar Biol 158:1551–1580. doi:10.1007/s00227-011-1670-2

    Article  Google Scholar 

  • Lundsgaard C, Olesen M, Reigstad M, Olli K (1999) Sources of settling material: aggregation and zooplankton mediated fluxes in the Gulf of Riga. J Mar Syst 23:197–210

    Article  Google Scholar 

  • McCauley E, Briand F (1979) Zooplankton grazing and phytoplankton species richness: field tests of the predation hypothesis. Limnol Oceanogr 24:243–252

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579

    Article  CAS  Google Scholar 

  • Montagnes DJS (1996) Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Marine Ecology-Progress Series 130:241–254

    Article  Google Scholar 

  • Neumann T (2010) Climate-change effects on the Baltic Sea ecosystem: a model study. J Mar Syst 81:213–224. doi:10.1016/j.jmarsys.2009.12.001

    Article  Google Scholar 

  • O’Connor MI (2009) Warming strengthens an herbivore—plant interaction. Ecology 90:388–398. doi:10.1890/08-0034.1

    Article  Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178. doi:10.1371/journal.pbio.1000178

    Article  Google Scholar 

  • Piontek J, Händel N, Langer G, Wohlers J, Riebesell U, Engel A (2009) Effects of rising temperature on the formation and microbial degradation of marine diatom aggregates. Aquat Microb Ecol 54:305–318. doi:10.3354/ame01273

    Article  Google Scholar 

  • Ptacnik R, Sommer U, Hansen T, Martens V (2004) Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnol Oceanogr 49:1435–1445

    Article  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “Oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Article  Google Scholar 

  • Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Richardson AJ (2008) In hot water: zooplankton and climate change. Journal of Marine Science 65:279–295. doi:10.1093/icesjms/fsn028

    Google Scholar 

  • Richardson AJ, Schoeman DS (2004) Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305:1609–1612. doi:10.1126/science.1100958

    Article  CAS  Google Scholar 

  • Rose JM, Caron DA (2007) Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr 52:886–895

    Article  Google Scholar 

  • Ryther JH, Sanders JG (1980) Experimental evidence of zooplankton control of the species composition and size distribution of marine phytoplankton. Mar Ecol Prog Ser 3:279–283. doi:10.3354/meps003279

    Article  Google Scholar 

  • Saiz E, Calbet A (2011) Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666:181–196. doi:10.1007/s10750-010-0421-6

    Article  CAS  Google Scholar 

  • Sherr EB, Sherr BF (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Marine Ecology-Progress Series 352:187–197. doi:10.3354/meps07161

    Article  Google Scholar 

  • Sherr EB, Sherr BF (2009) Capacity of herbivorous protists to control initiation and development of mass phytoplankton blooms. Aquat Microb Ecol 57:253–262. doi:10.3354/ame01358

    Article  Google Scholar 

  • Sinistro R (2010) Top–down and bottom–up regulation of planktonic communities in a warm temperate wetland. J Plankton Res 32:209–220. doi:10.1093/plankt/fbp114

    Article  CAS  Google Scholar 

  • Smith JRWO, Lancelot C (2004) Bottom–up versus top–down control in phytoplankton of the Southern Ocean. Antarct Sci 16:531–539. doi:10.1017/S0954102004002305

    Article  Google Scholar 

  • Sommer U (2005) Biologische Meereskunde, 2nd edn. Springer, Berlin

    Google Scholar 

  • Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208. doi:10.1111/j.1365-2486.2008.01571.x

    Article  Google Scholar 

  • Sommer U, Lewandowska A (2011) Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob Change Biol 17:154–162. doi:10.1111/j.1365-2486.2010.02182.x

    Article  Google Scholar 

  • Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147:183–194. doi:10.1007/s00442-005-0320-0

    Article  Google Scholar 

  • Sommer U, Stibor H (2002) Copepoda–Cladocera–Tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecol Res 17:161–174. doi:10.1046/j.1440-1703.2002.00476.x

    Article  Google Scholar 

  • Sommer F, Saage A, Santer B, Hansen T, Sommer U (2005a) Linking foraging strategies of marine calanoid copepods to patterns of nitrogen stable isotope signatures in a mesocosm study. Marine Ecology-Progress Series 286:99–106. doi:10.3354/meps286099

    Article  CAS  Google Scholar 

  • Sommer U, Hansen T, Blum O, Holzner N, Vadstein O, Stibor H (2005b) Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N influence on zooplankton trophic level. Oecologia 142:274–283. doi:10.1007/s00442-004-1708-y

    Article  Google Scholar 

  • Sommer U, Aberle N, Engel A, Hansen T, Lengfellner K, Sandow M, Wohlers J, Zöllner E, Riebesell U (2007) An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- an zooplankton. Oecologia 150:655–667. doi:10.1007/s00442-006-0539-4

    Article  Google Scholar 

  • Stibor H, Vadstein O, Diehl S, Gelzleichter A, Hansen T, Hantzsche F, Katechakis A, Lippert B, Løseth K, Peters C, Roederer W, Sandow M, Sundt-Hansen L, Olsen Y (2004) Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecol Lett 7:321–328. doi:10.1111/j.1461-0248.2004.00580.x

    Article  Google Scholar 

  • Tadonleke RD, Sime-Ngado T (2000) Rates of growth and microbial grazing mortality of phytoplankton in a recent artificial lake. Aquat Microb Ecol 22:301–313. doi:10.3354/ame022301

    Article  Google Scholar 

  • Thackeray SJ, Jones ID, Maberly SC (2008) Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. J Ecol 96:523–535. doi:10.1111/j.1365-2745.2008.01355.x

    Article  Google Scholar 

  • Tillmann U (2004) Interactions between planktonic microalgae and protozoan grazers. Journal of Eukayotic Microbiology 51:156–168

    Article  Google Scholar 

  • Tilzer MM, Elbrächter M, Gieskes WW, Beese B (1986) Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol 5:105–111. doi:10.1007/BF00443382

    Article  Google Scholar 

  • Vadstein O, Stibor H, Lippert B, Løseth K, Roederer W, Sundt-Hansen L, Olsen Y (2004) Moderate increase in the biomass of omnivorous copepods may ease grazing control of planktonic algae. Mar Ecol Prog Ser 270:199–207. doi:10.3354/meps270199

    Article  Google Scholar 

  • Vincent D, Hartmann HJ (2001) Contribution of ciliated microprotozoans and dinoflagellates to the diet of three copepod species in the Bay of Biscay. Hydrobiologia 443:193–204. doi:10.1023/A:1017502813154

    Article  Google Scholar 

  • Wasmund N, Göbel J, Von Bodungen B (2008) 100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea). J Mar Syst 73:300–322. doi:10.1016/j.jmarsys.2006.09.009

    Article  Google Scholar 

  • Wiklund AKE, Dahlgren K, Sundelin B, Andersson A (2009) Effects of warming and shifts of pelagic food web structure on benthic productivity in a coastal marine system. Mar Ecol Prog Ser 396:13–25. doi:10.3354/meps08290

    Article  CAS  Google Scholar 

  • Wiltshire KH, Malzahn AM, Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302. doi:10.4319/lo.2008.53.4.1294

    Article  Google Scholar 

  • Wiltshire KH, Kraberg A, Bartsch I, Boersma M, Franke HD, Freund J, Gebühr C, Gerdts G, Stockmann K, Wichels A (2010) Helgoland Roads, North Sea: 45 years of change. Estuaries Coasts 33:295–310. doi:10.1007/s12237-009-9228-y

    Article  CAS  Google Scholar 

  • Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B—Biological Sciences 276:427–435. doi:10.1098/rspb.2008.1200

    Article  Google Scholar 

  • Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, Hoppe HG, Sommer U, Riebesell U (2009) Changes in biogenic carbon flow in response to sea surface warming. Proc Nat Acad Sci USA 106:7067–7072. doi:10.1073/pnas.0812743106

    Article  CAS  Google Scholar 

  • Yvon-Durocher G, Montoya JM, Trimmer M, Woodward G (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob Change Biol 17:1681–1694. doi:10.1111/j.1365-2486.2010.02321.x

    Article  Google Scholar 

  • Zöllner E, Santer B, Boersma M, Hoppe HG, Jürgens K (2003) Cascading predation effects of Daphnia and copepods on microbial food web components. Freshw Biol 48:2174–2193. doi:10.1046/j.1365-2426.2003.01158.x

    Article  Google Scholar 

  • Zöllner E, Hoppe HG, Sommer U, Jürgens K (2009) Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnol Oceanogr 54:262–275. doi:10.4319/lo.2009.54.1.0262

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) within the priority program 1162 ‘The impact of climate variability on aquatic ecosystems’ (AQUASHIFT). Francisco de Castro is acknowledged for advice on computational issues. T. Klauschies also thanks Aleksandra Lewandowska for help in technical questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Klauschies.

Additional information

Communicated by R. Adrian.

Appendices

Appendix 1

See Table 4.

Table 4 Classification of autotrophic phytoplankton and microzooplankton into functional groups

Appendix 2

See Table 5.

Table 5 Classification of heterotrophic microzooplankton into functional groups

Appendix 3

See Fig. 10

Fig. 10
figure 10

Mean biomasses [µg C L−1] of (a, d) smaller (CS) and (b, e) larger ciliates (CL) and (c, f) heterotrophic dinoflagellates (DINO) in relation to the mean biomass [µg C L−1] of copepods (COP) for the high-light (ac) and low-light experiments (df). White and black squares indicate data from the ambient (ΔT = 0 °C, ΔT = 2 °C)- and warm (ΔT = 4 °C, ΔT = 6 °C)-temperature treatments, respectively. Data points of the years 2005 and 2008 are marked by squares and of the years 2007 and 2009 by circles. BlackT = 4 °C, ΔT = 6 °C) and greyT = 0 °C, ΔT = 2 °C) lines represent significant (P < 0.05) linear regression lines. Dashed lines represent 1:1 relationships

Appendix 4

See Fig. 11

Fig. 11
figure 11

Maximum biomasses [µg C L−1] of a copepods (COP), b nauplii (NAUP), c edible microzooplankton (EMZ), d inedible microzooplankton (IMZ), e smaller (CS) and f larger ciliates (CL) and g heterotrophic dinoflagellates (DINO) in relation to the initial light intensity [Watt m−2 d−1] of the experiments. h The maximum biomass of inedible microzooplankton (IMZ) in relation to the maximum biomass of DINO. White and black squares indicate data from the ambient (ΔT = 0 °C, ΔT = 2 °C)- and warm (ΔT = 4 °C, ΔT = 6 °C)-temperature treatments, respectively. The low-light and high-light experiments are marked light and dark grey. BlackT = 6 °C) and greyT = 0 °C) lines represented significant (P < 0.05) linear regression lines. Dashed lines represent 1:1 relationships

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klauschies, T., Bauer, B., Aberle-Malzahn, N. et al. Climate change effects on phytoplankton depend on cell size and food web structure. Mar Biol 159, 2455–2478 (2012). https://doi.org/10.1007/s00227-012-1904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1904-y

Keywords

Navigation