Skip to main content
Log in

The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Mesocosm experiments coupled with dilution grazing experiments were carried out during the phytoplankton spring bloom 2009. The interactions between phytoplankton, microzooplankton and copepods were investigated using natural plankton communities obtained from Helgoland Roads (54°11.3′N; 7°54.0′E), North Sea. In the absence of mesozooplankton grazers, the microzooplankton rapidly responded to different prey availabilities; this was most pronounced for ciliates such as strombidiids and strobilids. The occurrence of ciliates was strongly dependent on specific prey and abrupt losses in their relative importance with the disappearance of their prey were observed. Thecate and athecate dinoflagellates had a broader food spectrum and slower reaction times compared with ciliates. In general, high microzooplankton potential grazing impacts with an average consumption of 120% of the phytoplankton production (Pp) were measured. Thus, the decline in phytoplankton biomass could be mainly attributed to an intense grazing by microzooplankton. Copepods were less important phytoplankton grazers consuming on average only 47% of Pp. Microzooplankton in turn contributed a substantial part to the copepods’ diets especially with decreasing quality of phytoplankton food due to nutrient limitation over the course of the bloom. Copepod grazing rates exceeded microzooplankton growth, suggesting their strong top-down control potential on microzooplankton in the field. Selective grazing by microzooplankton was an important factor for stabilising a bloom of less-preferred diatom species in our mesocosms with specific species (Thalassiosira spp., Rhizosolenia spp. and Chaetoceros spp.) dominating the bloom. This study demonstrates the importance of microzooplankton grazers for structuring and controlling phytoplankton spring blooms in temperate waters and the important role of copepods as top-down regulators of microzooplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aberle N, Lengfellner K, Sommer U (2007) Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150:668–681

    CAS  PubMed  Google Scholar 

  • Arndt H (1993) Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—a review. Hydrobiologia 255:231–246

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  • Båmstedt U, Gifford DJ, Irigoien X, Atkinson A, Roman M (2000) Feeding. In: Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic Press, London, pp 297–399

    Google Scholar 

  • Bec A, Martin-Creuzburg D, von Elert E (2006) Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnol Oceanogr 51:1699–1707

    Google Scholar 

  • Brock TD (1981) Calculating solar radiation for ecological studies. Ecolog Model 14:1–19

    Google Scholar 

  • Broglio E, Jónasdóttir SH, Calbet A, Jakobsen HH, Saiz E (2003) Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat Microb Ecol 31:267–278

    Google Scholar 

  • Brussaard CPD, Riegman R, Noordeloos AAM, Cadee GC, Witte H, Kop AJ, Nieuwland G, Vanduyl FC, Bak RPM (1995) Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Mar Ecol Prog Ser 123:259–271

    Google Scholar 

  • Calbet A (2001) Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems. Limnol Oceanogr 46:1824–1830

    Google Scholar 

  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57

    CAS  Google Scholar 

  • Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol 38:157–167

    Google Scholar 

  • Carey PG (1992) Marine interstitial ciliates: an illustrated key. Chapman & Hall, London

    Google Scholar 

  • Caron DA (2000) Protistan herbivory and bacterivory. In: Paul J (ed) Methods in microbiology, vol 30. Academic Press, San Diego, pp 289–315

    Google Scholar 

  • Chesson J (1978) Measuring preference in selective predation. Ecol 59:211–215

    Article  Google Scholar 

  • Chesson J (1983) The estimation and analysis of preference and its relationship to foraging models. Ecol 64:1297–1304

    Google Scholar 

  • Christaki U, Dolan JR, Pelegri S, Rassoulzadegan F (1998) Consumption of picoplankton-size particles by marine ciliates: effects of physiological state of the ciliate and particle quality. Limnol Oceanogr 43:458–464

    Google Scholar 

  • Cowles TJ, Olson RJ, Chisholm SW (1988) Food selection by copepods—discrimination on the basis of food quality. Mar Biol 100:41–49

    Google Scholar 

  • Crawford DW, Stoecker DK (1996) Carbon content, dark respiration and mortality of the mixotrophic planktonic ciliate Strombidium capitatum. Mar Biol 126:415–422

    CAS  Google Scholar 

  • Dagg MJ, Vidal J, Whitledge TE, Iverson RL, Goering JJ (1982) The feeding, respiration, and excretion of zooplankton in the Bering Sea during a spring bloom. Deep-Sea Res Part I: Oceanogr Res Pap 29:45–63

    Google Scholar 

  • Dam HG (1986) Short-term feeding of Temora longicornis Müller in the laboratory and the field. J Exp Mar Biol Ecol 99:149–161

    Google Scholar 

  • Dam HG, Peterson WT (1993) Seasonal contrasts in the diel vertical distribution, feeding-behavior, and grazing impact of the copepod Temora longicornis in Long-Island Sound. J Mar Res 51:561–594

    Google Scholar 

  • Dam HG, Miller CA, Jonasdottir SH (1993) The trophic role of mesozooplankton at 47°N, 20°W during the North Atlantic Bloom Experiment. Deep-Sea Res Part II: Top Stud Oceanogr 40:197–212

    Google Scholar 

  • Daro MH (1985) Field-study of selectivity, efficiency and daily variation in the feeding of the marine copepod Temora longicornis, in the Southern Bight of the North Sea. Bull Mar Sci 37:764–764

    Google Scholar 

  • Dodge JD (1982) Marine dinoflagellates of the British Isles. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Dolan JR, McKeon K (2005) The reliability of grazing rate estimates from dilution experiments: have we over-estimated rates of organic carbon consumption by microzooplankton? Ocean Sci 1:1–7

    Google Scholar 

  • Dolan JR, Gallegos CL, Moigis A (2000) Dilution effects on microzooplankton in dilution grazing experiments. Mar Ecol Prog Ser 200:127–139

    CAS  Google Scholar 

  • Du Yoo Y, Jeong HJ, Kim MS, Kang NS, Song JY, Shin W, Kim KY, Lee K (2009) Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum. J Eukaryot Microbiol 56:413–420

    PubMed  Google Scholar 

  • Fenchel T (1980) Relation between particle size selection and clearance in suspension-feeding ciliates. Limnol Oceanogr 25:733–738

    Google Scholar 

  • Fenchel T, Finlay BJ (1983) Respiration rates in heterotrophic, free-living protozoa. Microb Ecol 9:99–122

    CAS  PubMed  Google Scholar 

  • Fileman E, Smith T, Harris R (2007) Grazing by Calanus helgolandicus and Para-Pseudocalanus spp. on phytoplankton and protozooplankton during the spring bloom in the Celtic Sea. J Exp Mar Biol Ecol 348:70–84

    CAS  Google Scholar 

  • First MR, Miller HL, Lavrentyev PJ, Pinckney JL, Burd AB (2009) Effects of microzooplankton growth and trophic interactions on herbivory in coastal and offshore environments. Aquat Microb Ecol 54:255–267

    Google Scholar 

  • Flynn KJ (2008) Attack is not the best form of defense: Lessons from harmful algal bloom dynamics. Harmful Algae 8:129–139

    CAS  Google Scholar 

  • Fonda Umani S, Tirelli V, Beran A, Guardiani B (2005) Relations between microzooplankton and mesozooplankton: Competition versus predation on natural assemblages of the Gulf of Trieste (Northern Adriatic Sea). J Plankton Res 27:973–986

    Google Scholar 

  • Frost BW (1972) Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815

    Google Scholar 

  • Gaines G, Elbrächter M (1987) Heterotrophic nutrition. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell, Oxford, pp 224–268

    Google Scholar 

  • Gallegos CL (1989) Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: Nonlinear feeding kinetics. Mar Ecol Prog Ser 57:23–33

    Google Scholar 

  • Gentsch E, Kreibich T, Hagen W, Niehoff B (2009) Dietary shifts in the copepod Temora longicornis during spring: evidence from stable isotope signatures, fatty acid biomarkers and feeding experiments. J Plankton Res 31:45–60

    CAS  Google Scholar 

  • Gifford DJ (1985) Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Mar Ecol Prog Ser 23:257–267

    Google Scholar 

  • Gifford DJ, Dagg MJ (1988) Feeding of the estuarine copepod Acartia tonsa dana: Carnivory vs. herbivory in natural microplankton assemblages. Bull Mar Sci 43:458–468

    Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (eds) (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Greve W, Reiners F, Nast J, Hoffmann S (2004) Helgoland Roads meso- and macrozooplankton time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helgol Mar Res 58:274–288

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    CAS  Google Scholar 

  • Hamels I, Mussche H, Sabbe K, Muylaert K, Vyverman W (2004) Evidence for constant and highly specific active food selection by benthic ciliates in mixed diatoms assemblages. Limnol Oceanogr 49:58–68

    Google Scholar 

  • Hansen PJ (1992) Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar Biol 114:327–334

    Google Scholar 

  • Hansen FC, Reckermann M, Klein Breteler WCM, Riegman R (1993) Phaeocystis blooming enhanced by copepod predation on protozoa—evidence from incubation experiments. Mar Ecol Prog Ser 102:51–57

    Google Scholar 

  • Heinbokel JF (1978) Studies on the functional role of tintinnids in the southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar Biol 47:177–189

    Google Scholar 

  • Hickel W, Mangelsdorf P, Berg J (1993) The human impact in the German Bight: eutrophication during three decades (1962–1991). Helgol Meeresunters 47:243–263

    Google Scholar 

  • Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Google Scholar 

  • Hoppenrath M, Elbrächter M, Drebes G (2009) Marine phytoplankton: Selected microphytoplankton species from the North Sea around Helgoland and Sylt. Kleine Senckenberg-Reihe 49. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart

  • Irigoien X, Flynn KJ, Harris RP (2005) Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact? J Plankton Res 27:313–321

    Google Scholar 

  • Jackson KM, Berger J (1985) Survivorship curves of ciliate protozoa under starvation conditions and at low bacterial levels. Protistologica 21:17–24

    Google Scholar 

  • Jacobson DM, Anderson DM (1986) Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms. J Phycol 22:249–258

    Google Scholar 

  • Jakobsen HH, Halvorsen E, Hansen BW, Visser AW (2005) Effects of prey motility and concentration on feeding in Acartia tonsa and Temora longicornis: the importance of feeding modes. J Plankton Res 27(8):775–785

    Google Scholar 

  • Jensen TC, Hessen DO (2007) Does excess dietary carbon affect respiration of Daphnia? Oecologia 152:191–200

    PubMed  Google Scholar 

  • Jeong HJ (1999) The ecological role of heterotrophic dinoflagellates in marine plankton community. J Eukaryot Microbiol 46:390–396

    Google Scholar 

  • Johansson M, Gorokhova E, Larsson U (2004) Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. J Plankton Res 26:67–80

    Google Scholar 

  • Jonsson PR (1986) Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar Ecol Prog Ser 33:265–277

    Google Scholar 

  • Kahl A (1932) Urtiere oder Protozoa. I Wimpertiere. 3 Spirotricha. In: Dahl F (ed) Die Tierwelt Deutschlands und der angrenzenden Meeresteile, vol 25. Gustav Fischer, Jena

    Google Scholar 

  • Kim YO, Ha S, Taniguchi A (2008) Morphology and in situ sedimentation of the cysts of a planktonic oligotrich ciliate, Strombidium capitatum. Aquat Microb Ecol 53:173–179

    Google Scholar 

  • Klein Breteler WCM, Schogt N, Baas M, Schouten S, Kraay GW (1999) Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar Biol 135:191–198

    Google Scholar 

  • Kleppel GS (1993) On the diets of calanoid copepods. Mar Ecol Prog Ser 99:183–195

    Google Scholar 

  • Kleppel GS, Holliday DV, Pieper RE (1991) Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnol Oceanogr 36:172–178

    Google Scholar 

  • Köhler W, Schachtel G, Voleske P (1995) Biostatistik: Einführung in die Biometrie für Biologen und Agrarwissenschaftler, 2 edn edn. Springer, Berlin

    Google Scholar 

  • Koski M, Dutz J, Klein Breteler WCM (2005) Selective grazing of temora longicornis in different stages of a Phaeocystis globosa bloom—a mesocosm study. Harmful Algae 4(5):915–927

    Google Scholar 

  • Landry MR (1993) Estimating rates of growth and grazing mortality of phytoplankton by the dilution method. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, pp 715–722

    Google Scholar 

  • Landry MR, Calbet A (2004) Microzooplankton production in the oceans. ICES J Mar Sci 61:501–507

    Google Scholar 

  • Landry MR, Calbet A (2005) Reality checks on microbial food web interactions in dilution experiments: responses to the comments of Dolan and McKeon. Ocean Science 1:39–44

    Google Scholar 

  • Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67:283–288

    Google Scholar 

  • Landry MR, Kirshtein J, Constantinou J (1995) A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Mar Ecol Prog Ser 120:53–63

    Google Scholar 

  • Löder MGJ (2010) The role of heterotrophic dinoflagellate and ciliate grazers in the food web at Helgoland Roads, North Sea. Dissertation, Jacobs University Bremen

  • Löder MGJ, Aberle N, Klaas C, Kraberg AC, Wiltshire KH (2010) Conserving original in situ diversity in microzooplankton grazing set-ups. Mar Biodivers Rec 3:e28

    Google Scholar 

  • Löder MGJ, Kraberg AC, Aberle N, Peters S, Wiltshire KH (2011) Dinoflagellates and ciliates at Helgoland Roads, North Sea. Helgol Mar Res (in Press)

  • Maar M, Nielsen TG, Gooding S, Tonnesson K, Tiselius P, Zervoudaki S, Christou E, Sell A, Richardson K (2004) Trophodynamic function of copepods, appendicularians and protozooplankton in the late summer zooplankton community in the Skagerrak. Mar Biol 144:917–933

    Google Scholar 

  • Malzahn AM, Hantzsche F, Schoo KL, Boersma M, Aberle N (2010) Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162:35–48

    PubMed  Google Scholar 

  • Martin-Creuzburg D, Bec A, von Elert E (2005) Trophic upgrading of picocyanobacterial carbon by ciliates for nutrition of Daphnia magna. Aquat Microb Ecol 41:271–280

    Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. In: Advances in marine biology, vol 33. Academic Press, London

    Google Scholar 

  • McCauley E (1984) The estimation of the abundance and biomass of zooplankton in samples. In: Downing JA, Rigler FH (eds) A manual on methods for the assessment of secondary productivity in freshwater, IBP Handbook no. 17, 2nd edn. Blackwell Scientific Publications, Oxford, pp 228–265

    Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579

    CAS  Google Scholar 

  • Menden-Deuer S, Lessard EJ, Satterberg J, Grünbaum D (2005) Growth rates and starvation survival of three species of the pallium-feeding, thecate dinoflagellate genus Protoperidinium. Aquat Microb Ecol 41:145–152

    Google Scholar 

  • Moigis AG (2006) The clearance rate of microzooplankton as the key element for describing estimated non-linear dilution plots demonstrated by a model. Mar Biol 149:743–762

    Google Scholar 

  • Montagnes DJS (2003) Planctonic ciliate project internet homepage. http://www.liv.ac.uk/ciliate/intro.htm. Accessed 19 December 2007

  • Montagnes DJS, Lessard EJ (1999) Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: Its potential to control phytoplankton blooms. Aquat Microb Ecol 20:167–181

    Google Scholar 

  • Müller H, Geller W (1993) Maximum growth rates of aquatic ciliated protozoa—the dependence on body size and temperature reconsidered. Arch Hydrobiol 126:315–327

    Google Scholar 

  • Müller H, Weisse T (1994) Laboratory and field observations on the scuticociliate Histiobalantium from the pelagic zone of Lake Constance, FRG. J Plankton Res 16:391–401

    Google Scholar 

  • Naustvoll LJ (2000a) Prey size spectra and food preferences in thecate heterotrophic dinoflagellates. Phycologia 39:187–198

    Google Scholar 

  • Naustvoll LJ (2000b) Prey size spectra in naked heterotrophic dinoflagellates. Phycologia 39:448–455

    Google Scholar 

  • Nejstgaard JC, Gismervik I, Solberg PT (1997) Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Mar Ecol Prog Ser 147:197–217

    Google Scholar 

  • Nejstgaard JC, Naustvoll L-J, Sazhin A (2001) Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Mar Ecol Prog Ser 221:59–75

    Google Scholar 

  • O’Connors HB, Biggs DC, Ninivaggi DV (1980) Particle-size-dependent maximum grazing rates for Temora longicornis fed natural particle assemblages. Mar Biol 56(1):65–70

    Google Scholar 

  • Paffenhöfer G-A (1988) Feeding rates and behavior of zooplankton. Bull Mar Sci 43:430–445

    Google Scholar 

  • Park GS, Marshall HG (2000) The trophic contributions of rotifers in tidal freshwater and estuarine habitats. Estuar Coast Shelf Sci 51:729–742

    Google Scholar 

  • Paterson HL, Knott B, Koslow AJ, Waite AM (2008) The grazing impact of microzooplankton off south west Western Australia: as measured by the dilution technique. J Plankton Res 30:379–392

    Google Scholar 

  • Poole HH, Atkins WRG (1929) Photo-electric measurements of submarine illumination throughout the year. J Mar Biol Assoc UK 16:297–324

    Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon:volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Google Scholar 

  • Quinlan EL, Jett CH, Phlips EJ (2009) Microzooplankton grazing and the control of phytoplankton biomass in the Suwannee River estuary, USA. Hydrobiologia 632:127–137

    Google Scholar 

  • Riegman R, Kuipers BR, Noordeloos AAM, Witte HJ (1993) Size-differential control of phytoplankton and the structure of plankton communities. Neth J Sea Res 31:255–265

    Google Scholar 

  • Schoo KL (2010) Stoichiometric constraints in primary producers affect secondary consumers. Dissertation, Christian-Albrechts-Universität, Kiel

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek Int J Gen Mol Microb 81:293–308

    CAS  Google Scholar 

  • Sherr EB, Sherr BF (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar Ecol Prog Ser 352:187–197

    Google Scholar 

  • Sherr EB, Sherr BF (2009) Capacity of herbivorous protists to control initiation and development of mass phytoplankton blooms. Aquat Microb Ecol 57:253–262

    Google Scholar 

  • Sherr EB, Sherr BF, Paffenhöfer G-A (1986) Phagotrophic protozoa as food for metazoans: a “missing” trophic link in marine pelagic food webs? Mar Microb Food Webs 1:61–80

    Google Scholar 

  • Sime-Ngando T, Demers S, Juniper SK (1999) Protozoan bacterivory in the ice and the water column of a cold temperate lagoon. Microb Ecol 37:95–106

    CAS  PubMed  Google Scholar 

  • Smetacek V (1981) The annual cycle of proto-zooplankton in the Kiel Bight. Mar Biol 63:1–11

    Google Scholar 

  • Sommer U, Sommer F (2006) Cladocerans versus copepods: The cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147:183–194

    PubMed  Google Scholar 

  • Sommer U, Sommer F, Santer B, Zöllner E, Jürgens K, Jamieson C, Boersma M, Gocke K (2003) Daphnia versus copepod impact on summer phytoplankton: Functional compensation at both trophic levels. Oecologia 135:639–647

    PubMed  Google Scholar 

  • Sommer F, Saage A, Santer B, Hansen T, Sommer U (2005a) Linking foraging strategies of marine calanoid copepods to patterns of nitrogen stable isotope signatures in a mesocosm study. Mar Ecol Prog Ser 286:99–106

    CAS  Google Scholar 

  • Sommer U, Hansen T, Blum O, Holzner N, Vadstein O, Stibor H (2005b) Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: No overlap between food spectra and Si:N influence on zooplankton trophic level. Oecologia 142:274–283

    PubMed  Google Scholar 

  • Sommer U, Aberle N, Engel A, Hansen T, Lengfellner K, Sandow M, Wohlers J, Zöllner E, Riebesell U (2007) An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 150:655–667

    PubMed  Google Scholar 

  • Spittler P (1973) Feeding experiments with tintinnids. Oikos (Suppl.) 15:128–132

    Google Scholar 

  • Stoecker DK, Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J Plankton Res 12:891–908

    Google Scholar 

  • Stoecker DK, Silver MW (1990) Replacement and aging of chloroplasts in Strombidium capitatum (Ciliophora, Oligotrichida). Mar Biol 107:491–502

    Google Scholar 

  • Stoecker D, Guillard RRL, Kavee RM (1981) Selective predation by Favella ehrenbergii (Tintinnia) on and among dinoflagellates. Biolog Bull 160:136–145

    Google Scholar 

  • Strom SL, Morello TA (1998) Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. J Plankton Res 20:571–584

    Google Scholar 

  • Tackx MLM, Bakker C, Francke JW, Vink M (1989) Size and phytoplankton selection by Oosterschelde zooplankton. Neth J Sea Res 23:35–43

    Google Scholar 

  • Tackx MLM, Bakker C, Vanrijswijk P (1990) Zooplankton grazing pressure in the Oosterschelde (the Netherlands). Neth J Sea Res 25:405–415

    Google Scholar 

  • Tang KW, Taal M (2005) Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J Exp Mar Biol Ecol 318:85–98

    Google Scholar 

  • Teixeira IG, Figueiras FG (2009) Feeding behaviour and non-linear responses in dilution experiments in a coastal upwelling system. Aquat Microb Ecol 55:53–63

    Google Scholar 

  • Throndsen J (1978) Preservation and storage. In: Sournia A (ed) Phytoplankton manual. UNESCO, Paris, pp 69–74

    Google Scholar 

  • Tillmann U (2004) Interactions between planktonic microalgae and protozoan grazers. J Eukaryot Microbiol 51:156–168

    PubMed  Google Scholar 

  • Tiselius P (1989) Contribution of aloricate ciliates to the diet of Acartia clausi and Centropages hamatus in coastal waters. Mar Ecol Prog Ser 56:49–56

    Google Scholar 

  • Tomas CR (1996) Identifying marine diatoms and dinoflagellates. Academic Press Inc., San Diego

    Google Scholar 

  • Tyler JE (1968) The secchi disc. Limnol Oceanogr 13:1–6

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Plankton-Methodik. Mitt Int Ver theor angew Limnol 9:1–38

    Google Scholar 

  • Vanderploeg H, Scavia D (1979a) Caculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecol Model 7:135–149

    Google Scholar 

  • Vanderploeg H, Scavia D (1979b) Two electivity indices for feeding with special reference to zooplankton grazing. J Fish Res Board Can 36:362–365

    Google Scholar 

  • Verity PG (1991) Feeding in planktonic protozoans—evidence for nonrandom acquisition of prey. J Protozool 38:69–76

    Google Scholar 

  • Wiltshire KH, Dürselen CD (2004) Revision and quality analyses of the Helgoland Reede long-term phytoplankton data archive. Helgol Mar Res 58(4):252–268

    Google Scholar 

  • Wiltshire KH, Malzahn AM, Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302

    Google Scholar 

  • Xu DP, Song WB, Hu XZ (2005) Morphology of Cyclotrichium taniguchii sp. nov and C. cyclokaryon with establishment of a new genus, Dicyclotrichium gen. nov (Ciliophora: Haptorida). J Mar Biol Assoc UK 85:787–794

    Google Scholar 

  • Zöllner E, Hoppe HG, Sommer U, Jürgens K (2009) Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnol Oceanogr 54:262–275

    Google Scholar 

Download references

Acknowledgments

This study was part of a PhD thesis within the Food Web Project at the Alfred Wegener Institute for Polar and Marine Research and we are grateful for the funding. Special thanks to Prof. Ulrich Sommer, Thomas Hansen and Sebastian Meyer at the IFM-GEOMAR (Kiel) for providing us the “Copacabana” light control programme and who helped us in words and deeds. Many thanks to the technical department of the BAH for all the perfect “short notice” solutions and to Arne Malzahn for his technical support. Special thanks also to the “Copepod Hunter” Katherina Schoo for catching and sorting out all the copepods for our experiments. Furthermore, thanks to the crews of the research vessels Uthörn and Aade, Kristine Carstens, Silvia Peters and the whole team of the AWI Food Web Project. Last but not least many thanks for the comments of three anonymous reviewers which helped us a lot for improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. J. Löder.

Additional information

Communicated by U. Sommer.

Appendix

Appendix

See Tables 5, 6, 7, and 8.

Table 5 Microzooplankton grazing g (day−1), phytoplankton growth rates k (day−1) and instantaneous growth rate values μo (day−1) from bottles without added nutrients, percentage of initial stock Pi (%) and potential production Pp (%) grazed as determined in four dilution experiments for each registered prey taxon
Table 6 Microzooplankton carbon-specific filtration rates Fc (mL μgC predator−1 day−1) and carbon-specific ingestion rates Ic (μgC prey μgC predator−1 day−1), total ingestion rates of the microzooplankton community Itotal (μgC prey L−1 day−1) and electivity E* (−) for each registered prey taxon
Table 7 Temora longicornis grazing g (day−1), phytoplankton and microzooplankton growth rates k (day−1) and phytoplankton instantaneous growth rate values μo (day−1) from bottles without added nutrients, percentage of initial stock Pi (%) and potential production Pp (%) grazed as determined in four grazing experiments for each registered prey taxon
Table 8 Temoralongicornis individual filtration Fi (mL Ind.−1 day−1) and ingestion rates Ii (ngC Ind.−1 day−1) as well as carbon-specific filtration rates Fc (mL μgC predator−1 day−1) and carbon-specific ingestion rates Ic (μgC prey μgC predator−1 day−1), total ingestion rates Itotal (μgC prey L−1 day−1) and electivity E* (−) for each registered prey taxon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löder, M.G.J., Meunier, C., Wiltshire, K.H. et al. The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Mar Biol 158, 1551–1580 (2011). https://doi.org/10.1007/s00227-011-1670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1670-2

Keywords

Navigation