Skip to main content

Advertisement

Log in

A combination of umbilical cord mesenchymal stem cells and monosialotetrahexosy 1 ganglioside alleviates neuroinflammation in traumatic brain injury

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Neuro-inflammation and activated microglia play important roles in neuron damage in the traumatic brain injury (TBI). In this study, we determined the effect of neural network reconstruction after human umbilical cord mesenchymal stem cells (UMSCs) combined with monosialotetrahexosy 1 ganglioside (GM1) transplantation and the effect on the neuro-inflammation and polarization of microglia in a rat model of TBI, which was established in male rats using a fluid percussion brain injury device. Rats survived until day 7 after TBI were randomly treated with normal control (NC), saline (NS), GM1, UMSCs, and GM1 plus UMSCs. Modified neurological severity score (mNSS) was assessed on days 7 and 14, and the brain tissue of the injured region was collected. Immunofluorescence, RT-PCR, and western blot analysis found that inhibitory neuro-inflammatory cytokines TGF-β and CD163 protein expression levels in injured brain tissues were significantly increased in rats treated with GM1 + UMSCs, GM1, or UMSCs and were up-regulated compared to saline-treated rats. Neuro-inflammatory cytokines IL-6, COX-2 and iNOS protein expressions were down-regulated compared to rats treated with saline. The protein expression levels of NE, NF-200, MAP-2 and β-tubulin III were increased in the injured brain tissues from rats treated with GM1 + UMSCs, or GM1 and UMSCs alone compared to those in the rats treated with NS. The protein expression levels in rats treated with GM1 plus UMSCs were most significant on day 7 following UMSC transplantation. The rats treated with GM1 plus UMSCs had the lowest mNSS compared with that in the other groups. These data suggest that UMSCs and GM1 promote neural network reconstruction and reduce the neuro-inflammation and neurodegeneration through coordinating injury local immune inflammatory microenvironment to promote the recovery of neurological functions in the TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author on a reasonable request. YF, WQ, SK, and ZZ confirm the authenticity of all the raw data during this study.

References

  • Benady A, Freidin D, Pick CG, Rubovitch V (2018) GM1 ganglioside prevents axonal regeneration inhibition and cognitive deficits in a mouse model of traumatic brain injury. Sci Rep 8:13340

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13:392–402

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Hu N, Wang J, Xu L, Jia XL, Fan X, Shi JX, Chen F, Tu Y, Wang YW, Li XH (2022) Umbilical cord mesenchymal stem cells promote neurological repair after traumatic brain injury through regulating Treg/Th17 balance. Brain Res 1775:147711

    Article  CAS  PubMed  Google Scholar 

  • Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Corrigan F, Mander KA, Leonard AV, Vink R (2016) Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 13:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehlaghi Jadid K, Davidsson J, Lidin E, Hanell A, Angeria M, Mathiesen T, Risling M, Gunther M (2019) COX-2 inhibition by diclofenac is associated with decreased apoptosis and lesion area after experimental focal penetrating traumatic brain injury in rats. Front Neurol 10:811

    Article  PubMed  PubMed Central  Google Scholar 

  • Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, Bar-Or A, Antel JP (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60:717–727

    Article  PubMed  Google Scholar 

  • Fan K, Ma J, Xiao W, Chen J, Wu J, Ren J, Hou J, Hu Y, Gu J, Yu B (2017) Mangiferin attenuates blast-induced traumatic brain injury via inhibiting NLRP3 inflammasome. Chem Biol Interact 271:15–23

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Ohmi Y, Ji S, Zhang P, Bhuiyan RH, Ohkawa Y, Tajima O, Hashimoto N, Furukawa K (2017) Glycolipids: essential regulator of neuro-inflammation, metabolism and gliomagenesis. Biochim Biophys Acta Gen Subj 1861:2479–2484

    Article  CAS  PubMed  Google Scholar 

  • Galindo LT, Filippo TR, Semedo P, Ariza CB, Moreira CM, Camara NO, Porcionatto MA (2011) Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int 2011:564089

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao X, Chen J (2013) Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus. Exp Neurol 239:38–48

    Article  CAS  PubMed  Google Scholar 

  • He H, Zhao ZH, Han FS, Liu XH, Wang R, Zeng YJ (2016) Overexpression of protein kinase C varepsilon improves retention and survival of transplanted mesenchymal stem cells in rat acute myocardial infarction. Cell Death Dis 7:e2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellewell S, Semple BD, Morganti-Kossmann MC (2016) Therapies negating neuroinflammation after brain trauma. Brain Res 1640:36–56

    Article  CAS  PubMed  Google Scholar 

  • Itokazu Y, Tsai YT, Yu RK (2017) Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells. Glycoconj J 34:749–756

    Article  CAS  PubMed  Google Scholar 

  • Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J (2017) Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron 95:1246–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Guo Y (2022) Human umbilical cord mesenchymal stem cells derived exosomes promote neurological function recovery in a rat spinal cord injury model. Neurochem Res 47:1532–1540

    Article  CAS  PubMed  Google Scholar 

  • Kielian T (2019) Lysosomal storage disorders: pathology within the lysosome and beyond. J Neurochem 148:568–572

    Article  CAS  PubMed  Google Scholar 

  • Kokaia Z, Martino G, Schwartz M, Lindvall O (2012) Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 15:1078–1087

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40:407–418

    Article  CAS  PubMed  Google Scholar 

  • Li T, Xia M, Gao Y, Chen Y, Xu Y (2015) Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther 15:1293–1306

    Article  PubMed  Google Scholar 

  • Li L, Tian J, Long MK, Chen Y, Lu J, Zhou C, Wang T (2016) Protection against Experimental Stroke by Ganglioside GM1 Is Associated with the Inhibition of Autophagy. PLoS ONE 11:e0144219

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Xiao J, Xu X, Li W, Zhong R, Qi L, Chen J, Cui G, Wang S, Zheng Y, Qiu Y, Li S, Zhou X, Lu Y, Lyu J, Zhou B, Zhou J, Jing N, Wei B, Hu J, Wang H (2021) M-CSF, IL-6, and TGF-beta promote generation of a new subset of tissue repair macrophage for traumatic brain injury recovery. Sci Adv 7:eabb6260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisi L, Ciotti GM, Braun D, Kalinin S, Curro D, Dello Russo C, Coli A, Mangiola A, Anile C, Feinstein DL, Navarra P (2017) Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci Lett 645:106–112

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Wei MG, Liang J, Xu HH, Wang JJ, Wang J, Yang XP, Lv FF, Wang KQ, Duan JH, Tu Y, Zhang S, Chen C, Li XH (2020) Injury-preconditioning secretome of umbilical cord mesenchymal stem cells amplified the neurogenesis and cognitive recovery after severe traumatic brain injury in rats. J Neurochem 153:230–251

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Feng Y, Huang Y, Jiang X, Tang C, Tang F, Zeng C, Liu L (2021) A GM1 gangliosidosis mutant mouse model exhibits activated microglia and disturbed autophagy. Exp Biol Med (maywood) 246:1330–1341

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Ma W, Feng Y, Zhang Y, Jia X, Tang C, Tang F, Wu X, Huang Y (2022) AAV9-coGLB1 improves lysosomal storage and rescues central nervous system inflammation in a mutant mouse model of GM1 gangliosidosis. Curr Gene Ther 22:352–365

    Article  CAS  PubMed  Google Scholar 

  • Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY, Shang Y, Oldham MC, Martens LH, Gao F, Coppola G, Sloan SA, Hsieh CL, Kim CC, Bigio EH, Weintraub S, Mesulam MM, Rademakers R, Mackenzie IR, Seeley WW, Karydas A, Miller BL, Borroni B, Ghidoni R, Farese RV Jr, Paz JT, Barres BA, Huang EJ (2016) Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165:921–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Xia Z, Che Y, Zhou K (2021) Characteristics, treatments, and prognosis of a critical illness polyneuromyopathy patient with positive anti-GM1 after severe traumatic brain injury: a case report. Clin Exp Pharmacol Physiol 48:831–836

    Article  CAS  PubMed  Google Scholar 

  • Matsuda Y, Tanaka M, Sawabe M, Mori S, Muramatsu M, Mieno MN, Ishiwata T, Arai T (2019) The stem cell-specific intermediate filament nestin missense variation p. A1199P is associated with pancreatic cancer. Oncol Lett 17:4647–4654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Na HY, Park M, Kim YA, Won JK, Park YJ, Shin SA, Lee S, Oh S, Kim JE (2020) Expression of class III beta-tubulin is associated with invasive potential and poor prognosis in thyroid carcinoma. J Clin Med 9:3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan C, Shi Y, Zhao Z, Ma S, Liu J, Yan D, Song G, Liu H (2015) Monosialoteterahexosyl ganglioside induces the differentiation of human umbilical cord-derived mesenchymal stem cells into neuron-like cells. Int J Mol Med 36:1057–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niranjan R (2018) Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration. Neurochem Int 120:13–20

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. San Diego, CA, Academic

    Google Scholar 

  • Peruzzaro ST, Andrews MMM, Al-Gharaibeh A, Pupiec O, Resk M, Story D, Maiti P, Rossignol J, Dunbar GL (2019) Transplantation of mesenchymal stem cells genetically engineered to overexpress interleukin-10 promotes alternative inflammatory response in rat model of traumatic brain injury. J Neuroinflammation 16:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, Serra SC, Silva NA, Manadas B, Sousa N, Salgado AJ (2016) Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis. Stem Cells Dev 25:1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Pischiutta F, Brunelli L, Romele P, Silini A, Sammali E, Paracchini L, Marchini S, Talamini L, Bigini P, Boncoraglio GB, Pastorelli R, De Simoni MG, Parolini O, Zanier ER (2016) Protection of brain injury by amniotic mesenchymal stromal cell-secreted metabolites. Crit Care Med 44:e1118–e1131

    Article  CAS  PubMed  Google Scholar 

  • Platten M, Friedrich M, Wainwright DA, Panitz V, Opitz CA (2021) Tryptophan metabolism in brain tumors–IDO and beyond. Curr Opin Immunol 70:57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi L, Xue X, Sun J, Wu Q, Wang H, Guo Y, Sun B (2018) The Promising Effects of Transplanted Umbilical Cord Mesenchymal Stem Cells on the Treatment in Traumatic Brain Injury. J Craniofac Surg 29:1689–1692

    Article  PubMed  PubMed Central  Google Scholar 

  • Raber J, Torres ERS, Akinyeke T, Lee J, Weber Boutros SJ, Turker MS, Kronenberg A (2018) Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice. Int J Mol Sci 19:1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783

    Article  CAS  PubMed  Google Scholar 

  • Reader J, Harper AK, Legesse T, Staats PN, Goloubeva O, Rao GG, Fulton A, Roque DM (2019) EP4 and Class III beta-tubulin expression in uterine smooth muscle tumors: implications for prognosis and treatment. Cancers (basel) 11:1590

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Shen D, Caranasos TG, Wang Z, Vandergriff AC, Allen TA, Hensley MT, Dinh PU, Cores J, Li TS, Zhang J, Kan Q, Cheng K (2017) Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun 8:13724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor-Walker G, Lynn SA, Keeling E, Munday R, Johnston DA, Page A, Scott JA, Goverdhan S, Lotery AJ, Ratnayaka JA (2016) The Alzheimer’s-related amyloid beta peptide is internalised by R28 neuroretinal cells and disrupts the microtubule associated protein 2 (MAP-2). Exp Eye Res 153:110–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira FG, Carvalho MM, Neves-Carvalho A, Panchalingam KM, Behie LA, Pinto L, Sousa N, Salgado AJ (2015) Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation. Stem Cell Rev Rep 11:288–297

    Article  CAS  PubMed  Google Scholar 

  • Teixeira FG, Carvalho MM, Panchalingam KM, Rodrigues AJ, Mendes-Pinheiro B, Anjo S, Manadas B, Behie LA, Sousa N, Salgado AJ (2017) Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of parkinson’s disease. Stem Cells Transl Med 6:634–646

    Article  CAS  PubMed  Google Scholar 

  • Tsai YT, Yu RK (2014) Epigenetic activation of mouse ganglioside synthase genes: implications for neurogenesis. J Neurochem 128:101–110

    Article  CAS  PubMed  Google Scholar 

  • Vitner EB (2020) The role of brain innate immune response in lysosomal storage disorders: fundamental process or evolutionary side effect? FEBS Lett 594:3619–3631

    Article  CAS  PubMed  Google Scholar 

  • Wang LT, Ting CH, Yen ML, Liu KJ, Sytwu HK, Wu KK, Yen BL (2016) Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 23:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu TS, Washington PM, Kernie SG (2016) Injury-induced neurogenesis: mechanisms and relevance. Neuroscientist 22:61–71

    Article  PubMed  Google Scholar 

  • Yu S, Hei Y, Liu W (2018) Upregulation of seladin-1 and nestin expression in bone marrow mesenchymal stem cell transplantation via the ERK1/2 and PI3K/Akt signaling pathways in an Alzheimer’s disease model. Oncol Lett 15:7443–7449

    PubMed  Google Scholar 

  • Zanier ER, Pischiutta F, Riganti L, Marchesi F, Turola E, Fumagalli S, Perego C, Parotto E, Vinci P, Veglianese P, D’Amico G, Verderio C, De Simoni MG (2014) Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics 11:679–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Li H, Xing Z, Yuan H, Kindy MS, Li Z (2012) Expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 in cocultures of dissociated DRG neurons and skeletal muscle cells in administration of NGF or NT-3. Folia Histochem Cytobiol 50:312–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (grant no. 81870984), the National Key R&D Program Intergovernmental Cooperation on International Scientific and Technological Innovation of the Ministry of Science and Technology of China (grant no. 2017YFE0110400), the Hebei Natural Science Foundation General Project–Beijing-Tianjin-Hebei Basic Research Cooperation Project (grant no. H2018206675), the Special Project for the Construction of Hebei Province International Science and Technology Cooperation Base (grant no. 193977143D), the Projects on Training of outstanding Clinical Medical Personnel and Basic Research Projects of Hebei Province in 2017 and 2019.

Author information

Authors and Affiliations

Authors

Contributions

Conception and study design, YF, WQ, SK, and ZZ; data collection, YF, WQ, SK, NY, XL, QJ, HY, JZ; data analysis and interpretation, YF, WQ, SK, XL, and ZZ; collection of materials and samples, NY, JZ, YT and YF; drafting manuscript, YF, WQ, SK, NY, XL, and ZZ; all the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zongmao Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The experimental procedure was approved by the Animal Ethics Committee of Hebei Medical University (#SYXK (Hebei) 2018-008) and the Ethics Committee of The Second Hospital of Hebei Medical University (2018-R051).

Consent to participate

The experimental procedure was approved by the Animal Ethics Committee of Hebei Medical University (#SYXK (Hebei) 2018-008) and the Ethics Committee of The Second Hospital of Hebei Medical University (2018-R051).

Patient consent for publication

Not applicable.

Additional information

Communicated by Sreedharan Sajikumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Qiu, W., Li, X. et al. A combination of umbilical cord mesenchymal stem cells and monosialotetrahexosy 1 ganglioside alleviates neuroinflammation in traumatic brain injury. Exp Brain Res 241, 713–726 (2023). https://doi.org/10.1007/s00221-023-06554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-023-06554-4

Keywords

Navigation