Skip to main content
Log in

Hand-use and tool-use in grasping control

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The goal of this study was to elucidate the underlying mechanisms of hand and tool grasping control. We assumed that there is a single principle-governing grasping control irrespective of its effectors and that the degree of prior experience of the effector determines the smoothness of aperture control. Eight participants performed a reach-to-grasp task with four different effectors: index finger and thumb, middle finger and thumb, chopsticks, and a scissor-like tool. Although we employed different effectors with large mechanical variations and different degrees of prior use, maximum grip aperture was scaled as a function of object size and appeared at almost the same timing in all four types of grasping movements. Moreover, reaching time did not substantially differ among grasping conditions. However, plateau duration of the aperture profile differed by effector. Plateau duration was the longest in the unfamiliar scissor-like tool grasping condition. There was no difference between the unfamiliar hand-use grasp with the thumb and the middle finger and the familiar tool-grasp with chopsticks. The familiar hand-use grasp with the thumb and the index finger had the shortest plateau duration. These results supported the idea that there is an effector-independent continuity between hand-use and tool-use in motor control as a function of prior degree of use, rather than the conventionally assumed dichotomy between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamovich SV, Archambault PS, Ghafouri M, Levin MF, Poizner H, Feldman AG (2001) Hand trajectory invariance in reaching movements involving the trunk. Exp Brain Res 138:288–303

    Article  PubMed  CAS  Google Scholar 

  • Arbib MA, Iberall T, Lyons D (1985) Coordinated control programs for movements of the hand. In: Goodwin AW, DarianSmith I (eds) Hand function and the neocortex, pp 111–129

  • Berti A, Frassinetti F (2000) When far becomes near: remapping of space by tool use. J Cogn Neurosci 12:415–420

    Article  PubMed  CAS  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    Article  PubMed  CAS  Google Scholar 

  • Bongers RM (2010) Do changes in movements after tool use depend on body schema or motor learning? In Haptics: generating and perceiving tangible sensations. Springer Berlin Heidelberg, pp 271–276

  • Bongers RM, Zaal FT, Jeannerod M (2012) Hand aperture patterns in prehension. Hum Mov Sci 31:487–501

    Article  PubMed  Google Scholar 

  • Bouwsema H, der Sluis CKV, Bongers RM (2010) Movement characteristics of upper extremity prostheses during basic goal-directed tasks. Clin Biomech 25:523–529

    Article  Google Scholar 

  • Brozzoli C, Cardinali L, Pavani F, Farnè A (2010) Action-specific remapping of peripersonal space. Neuropsychologia 48:796–802

    Article  PubMed  CAS  Google Scholar 

  • Brozzolli C, Pavani F, Urquizar C, Cardinali L, Farne A (2009) Grasping action remap peripersonal space. Neuroreport 20:913–917

    Article  Google Scholar 

  • Burdet E, Osu R, Franklin DW, Milner TE, Kawato M (2001) The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414:446–449

    Article  PubMed  CAS  Google Scholar 

  • Cardinali L, Frassinetti F, Brozzoli C, Urquizar C, Roy AC, Farnè A (2009) Tool-use induces morphological updating of the body schema. Curr Biol 19:R478–R479

    Article  PubMed  CAS  Google Scholar 

  • Darainy M, Malfait N, Gribble PL, Towhidkhah F, Ostry DJ (2004) Learning to control arm stiffness under static conditions. J Neurophysiol 92:3344–3350

    Article  PubMed  Google Scholar 

  • De Vignemont F, Farnè A (2010) Widening the body to rubber hands and tools: what’s the difference? Rev Neuropsychol 2:203–211

    Article  Google Scholar 

  • Farnè A, Làdavas E (2000) Dynamic size-change of hand peripersonal space following tool use. Neuroreport 11:1645–1649

    Article  PubMed  Google Scholar 

  • Flanagan JR, Johansson RS (2003) Action plans used in action observation. Nature 424:769–771

    Article  PubMed  CAS  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    PubMed  CAS  Google Scholar 

  • Franklin DW, Milner TE (2003) Adaptive control of stiffness to stabilize hand position with large loads. Exp Brain Res 152:211–220

    Article  PubMed  Google Scholar 

  • Gentili R, Han CE, Schweighofer N, Papaxanthis C (2010) Motor learning without doing: trial-by-trial improvement in motor performance during mental training. J Neurophysiol 104:774–783

    Article  PubMed  Google Scholar 

  • Gentilucci M, Roy AC, Stefanini S (2004) Grasping an object naturally or with a tool: are these tasks guided by a common motor representation? Exp Brain Res 157:496–506

    Article  PubMed  Google Scholar 

  • Grosskopf A, Kuhtz-Buschbeck JP (2006) Grasping with the left and right hand: a kinematic study. Exp Brain Res 168:230–240

    Article  PubMed  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    Article  PubMed  CAS  Google Scholar 

  • Hoff B, Arbib MA (1993) Models of trajectory formation and temporal interaction of reach and grasp. J Mot Behav 25:175–192

    Article  PubMed  Google Scholar 

  • Ingram JN, Körding KP, Howard IS, Wolpert DM (2008) The statistics of natural hand movements. Exp Brain Res 188:223–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7:2325–2330

    Article  PubMed  CAS  Google Scholar 

  • Itaguchi Y, Fukuzawa K (2012a) Effects of arm stiffness and muscle effort on position reproduction error in the horizontal plane. Percept Mot Skills 114:757–773

    Article  PubMed  Google Scholar 

  • Itaguchi Y, Fukuzawa K (2012b) The influence of the indicator arm on end point distribution in proprioceptive localization with multi-joint arms. Exp Brain Res 222:77–88

    Article  PubMed  Google Scholar 

  • Jakobson LS, Goodale MA (1991) Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Exp Brain Res 86:199–208

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (1988) The neural and behavioural organization of goal-directed movements. Clarendon Press/Oxford University Press

  • Kaminski TR, Bock C, Gentile AM (1995) The coordination between trunk and arm motion during pointing movements. Exp Brain Res 106:457–466

    Article  PubMed  CAS  Google Scholar 

  • Kao KLC, Goodale MA (2009) Enhanced detection of visual targets on the hand and familiar tools. Neuropsychol 47:2454–2463

    Article  Google Scholar 

  • Kawato M, Wolpert D (1998) Internal models for motor control. In: Sensory guidance of movement (Novartis Foundation Symposium 218), Wiley, Chichester, pp 291–307

  • Malfait N, Ostry DJ (2004) Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? J Neurosci 24:8084–8089

    Article  PubMed  CAS  Google Scholar 

  • Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cogn Sci 8:79–86

    Article  PubMed  Google Scholar 

  • Maravita A, Clarke K, Husain M, Driver J (2002a) Active tool use with the contralesional hand can reduce cross-modal extinction of touch on that hand. Neurocase 8:411–416

    Article  PubMed  Google Scholar 

  • Maravita A, Spence C, Kennett S, Driver J (2002b) Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition 83:B25–B34

    Article  PubMed  Google Scholar 

  • Meulenbroek RG, Rosenbaum DA, Jansen C, Vaughan J, Vogt S (2001) Multijoint grasping movements. Exp Brain Res 138:219–234

    Article  PubMed  CAS  Google Scholar 

  • Napier JR (1956) The prehensile movements of the human hand. J Bone Joint Surg 38:902–913

    Google Scholar 

  • Osiurak F, Jarry C, Le Gall D (2011) Re-examining the gesture engram hypothesis. New perspectives on apraxia of tool use. Neuropsychologia 49:299–312

    Article  PubMed  Google Scholar 

  • Rosenbaum DA, Meulenbroek RG, Vaughan J, Jansen C (2001) Posture-based motion planning: applications to grasping. Psychol Rev 108:709–734

    Article  PubMed  CAS  Google Scholar 

  • Smeets JB, Brenner E (1999) A new view on grasping. Mot Control 3:237–271

    CAS  Google Scholar 

  • Tresilian JR, Stelmach GE, Adler CH (1997) Stability of reach-to-grasp movement patterns in Parkinson’s disease. Brain 120:2093–2111

    Article  PubMed  Google Scholar 

  • Umiltà MA, Intskirveli I, Grammont F et al (2008) When pliers become fingers in the monkey motor system. PNAS 105:2209–2213

    Article  PubMed  PubMed Central  Google Scholar 

  • Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement. Biol Cybern 61:89–101

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Stelmach GE (1998) Coordination among the body segments during reach-to-grasp action involving the trunk. Exp Brain Res 123:346–350

    Article  PubMed  CAS  Google Scholar 

  • Williams A, Gribble PL (2012) Observed effector-independent motor learning by observing. J Neurophysiol 107:1564–1570

    Article  PubMed  Google Scholar 

  • Wing AM, Fraser C (1983) The contribution of the thumb to reaching movements. Q J Exp Psychol 35:297–309

    Article  CAS  Google Scholar 

  • Witt JK, Proffitt DR, Epstein W (2005) Tool use affects perceived distance, but only when you intend to use it. J Exp Psychol Hum Percept Perform 31:880–888

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Itaguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itaguchi, Y., Fukuzawa, K. Hand-use and tool-use in grasping control. Exp Brain Res 232, 3613–3622 (2014). https://doi.org/10.1007/s00221-014-4053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4053-3

Keywords

Navigation