Skip to main content

Synergies in Grasping

  • Chapter
  • First Online:
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 957))

Abstract

The reach-to-grasp movement is a prototype of human movement coordination. Since the pioneering work of Jeannerod (Attention and performance, ix. Erlbaum, Hillsdale, NJ, pp 153–169, 1981), this movement is generally considered to be a coordinated combination of hand transport and grip formation. One of the main theoretical reasons for choosing transport and grip as building blocks is that they are anatomically independent: one can determine for each muscle, joint or brain area whether it belongs to transport or grip. We have proposed a different view on grasping, in which the coordination problem is formulated as one related to the movements of the digits (Smeets and Brenner in Motor Control 3:237–271, 1999). According to this view, both the transport of the hand and the formation of the grip emerge from the combination of independent digits’ movements towards the objects’ surface. This independency of the digits resembles the independence of synergies (as discussed in the chapter of d’Avella). Different synergies are activated independently, but a single muscle can be part of several synergies. In this chapter we will present three types of experiments that were designed to test to what extent the individual digits’ movements can be considered the building blocks of the reach-to-grasp movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aivar MP, Brenner E, Smeets JBJ (2008) Avoiding moving obstacles. Exp Brain Res 190:251–264

    Article  PubMed  Google Scholar 

  • Brinkman J, Kuypers HGJM (1973) Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split-brain rhesus monkey. Brain 96:653–674

    Article  CAS  PubMed  Google Scholar 

  • Cluff T, Crevecoeur F, Scott SH (2015) A perspective on multisensory integration and rapid perturbation responses. Vision Res 110:215–222

    Article  PubMed  Google Scholar 

  • Cuijpers RH, Brenner E, Smeets JBJ (2008) Consistent haptic feedback is required but it is not enough for natural reaching to virtual cylinders. Hum Mov Sci 27:857–872

    Article  PubMed  Google Scholar 

  • Cuijpers RH, Smeets JBJ, Brenner E (2004) On the relation between object shape and grasping kinematics. J Neurophys 91:2598–2606

    Article  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300–308

    Article  PubMed  Google Scholar 

  • Desmurget M, Prablanc C, Arzi M, Rossetti Y, Paulignan Y, Urquizar C (1996) Integrated control of hand transport and orientation during prehension movements. Exp Brain Res 110:265–278

    Article  CAS  PubMed  Google Scholar 

  • Galea MP, Castiello U, Dalwood N (2001) Thumb invariance during prehension movement: effects of object orientation. NeuroReport 12:2185–2187

    Article  CAS  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  CAS  PubMed  Google Scholar 

  • Haggard P, Wing A (1997) On the hand transport component of prehensile movements. J Mot Behav 29:282–287

    Article  CAS  PubMed  Google Scholar 

  • Hesse C, Franz VH (2009) Corrective processes in grasping after perturbations of object size. J Mot Behav 41:253–273

    Article  PubMed  Google Scholar 

  • Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance ix. Erlbaum, Hillsdale, NJ, pp 153–169

    Google Scholar 

  • Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Scholz JP, Schoner G (2007) Toward a new theory of motor synergies. Mot Control 11:276–308

    Article  Google Scholar 

  • Lee WA (1984) Neuromotor synergies as a basis for coordinated intentional action. J Mot Behav 16:135–170

    Article  CAS  PubMed  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. 1. Focal olivocerebellar lesions impair adaptation. Brain 119:1183–1198

    Article  PubMed  Google Scholar 

  • Milner AD, Goodale MA (2006) The visual brain in action, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46:774–785

    Article  CAS  PubMed  Google Scholar 

  • Mon-Williams M, McIntosh RD (2000) A test between two hypotheses and a possible third way for the control of prehension. Exp Brain Res 134:268–273

    Article  CAS  PubMed  Google Scholar 

  • Overduin SA, d’Avella A, Roh J, Carmena JM, Bizzi E (2015) Representation of muscle synergies in the primate brain. J Neurosci 35:12615–12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulignan Y, Jeannerod M, MacKenzie C, Marteniuk R (1991a) Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Exp Brain Res 87:407–420

    Article  CAS  PubMed  Google Scholar 

  • Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M (1991b) Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res 83:502–512

    Article  CAS  PubMed  Google Scholar 

  • Redding GM, Wallace B (1988) Components of prism adaptation in terminal and concurrent exposure: Organization of the eye-hand coordination loop. Percept Psychophys 44:59–68

    Article  CAS  PubMed  Google Scholar 

  • Schenk T (2012) No dissociation between perception and action in patient df when haptic feedback is withdrawn. J Neurosci 32:2013–2017

    Article  CAS  PubMed  Google Scholar 

  • Schot WD, Brenner E, Smeets JBJ (2014) Simultaneous adaptation of the thumb and index finger of the same hand to opposite prism displacements. J Neurophys 111:2554–2559

    Article  Google Scholar 

  • Shadmehr R, BrashersKrug T (1997) Functional stages in the formation of human long-term motor memory. J Neurosci 17:409–419

    CAS  PubMed  Google Scholar 

  • Smeets JBJ, Brenner E (1999) A new view on grasping. Mot Control 3:237–271

    Article  CAS  Google Scholar 

  • Smeets JBJ, Brenner E (2001) Independent movements of the digits in grasping. Exp Brain Res 139:92–100

    Article  CAS  PubMed  Google Scholar 

  • Smeets JBJ, Brenner E (2008) Grasping weber’s law. Curr Biol 18:R1089–R1090

    Article  CAS  PubMed  Google Scholar 

  • Smeets JBJ, Brenner E, Biegstraaten M (2002) Independent control of the digits predicts an apparent hierarchy of visuomotor channels in grasping. Behav Brain Res 136:427–432

    Article  PubMed  Google Scholar 

  • Smeets JBJ, Martin J, Brenner E (2010) Similarities between digits’ movements in grasping, touching and pushing. Exp Brain Res 203:339–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Smeets JBJ, Oostwoud Wijdenes L, Brenner E (2016) Movement adjustments have short latencies because there is no need to detect anything. Motor Control (in press)

    Google Scholar 

  • Smeets JBJ, van den Dobbelsteen JJ, de Grave DDJ, van Beers RJ, Brenner E (2006) Sensory integration does not lead to sensory calibration. Proc Natl Acad Sci USA 103:18781–18786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4:1035–1043

    Article  CAS  Google Scholar 

  • Soechting JF, Lacquaniti F (1989) An assessment of the existence of muscle synergies during load perturbations and intentional movements of the human arm. Exp Brain Res 74:535–548

    Article  CAS  PubMed  Google Scholar 

  • Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophys 93:609–613

    Article  Google Scholar 

  • Tresch MC, Jarc A (2009) The case for and against muscle synergies. Curr Opin Neurobiol 19:601–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevarthen CB (1968) Two mechanisms of vision in primates. Psychologische Forschung 31:299–348

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider LG, Haxby JV (1994) ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol 4:157–165

    Article  CAS  PubMed  Google Scholar 

  • van de Kamp C, Bongers RM, Zaal FTJM (2009) Effects of changing object size during prehension. J Mot Behav 41:427–435

    Article  PubMed  Google Scholar 

  • van de Kamp C, Zaal FTJM (2007) Prehension is really reaching and grasping. Exp Brain Res 182:27–34

    Article  PubMed  Google Scholar 

  • van der Kooij K, Brenner E, van Beers RJ, Smeets JBJ (2015) Visuomotor adaptation: how forgetting keeps us conservative. PLoS ONE 10:e0117901

    Article  PubMed  PubMed Central  Google Scholar 

  • Verheij R, Brenner E, Smeets JBJ (2012) Grasping kinematics from the perspective of the individual digits: a modelling study. PLoS ONE 7:e33150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voudouris D, Smeets JBJ, Brenner E (2013) Ultra-fast selection of grasping points. J Neurophys 110:1484–1489

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen B. J. Smeets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Smeets, J.B.J., Brenner, E. (2016). Synergies in Grasping. In: Laczko, J., Latash, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-319-47313-0_2

Download citation

Publish with us

Policies and ethics