Skip to main content
Log in

Grasping with the left and right hand: a kinematic study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The goal of the present study was to compare prehension movements of the dominant and the non-dominant hand. Twenty right-handed volunteers (age 20–30 years) reached forward to grasp a cylindrical object, which was lifted and then placed into a target position in a retraction–insertion movement. The movements were performed at three different velocities (normal, deliberately fast, or slowly) both, under visual control, and in a no-vision condition. Analysis of the kinematic data revealed that the speed of hand transport influenced pre-shaping of both hands in a similar way. In the visual condition, the grip aperture increased about linearly with peak transport velocity, while it increased non-linearly with shorter movement duration. Comparison of the regression parameters showed that these relationships were nearly identical for both hands. The dominant hand was faster in inserting the object into the target position. Otherwise, no significant inter-manual differences were found. During prehension without visual control, the fingers opened more and movement duration was prolonged. Except for a larger grip aperture of the dominant hand at the end of the acceleration phase, the kinematic data of both hands were again comparable. This invariance was in contrast to performance in fine motor skills such as a pegboard test and drawing movements, where there was a clear advantage of the dominant hand. The similar pre-shaping of both hands during prehension is discussed with regard to a common motor representation of grasping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321

    PubMed  CAS  Google Scholar 

  • Annett M (1992) Five tests of hand skill. Cortex 28:583–600

    PubMed  CAS  Google Scholar 

  • Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421

    Article  PubMed  Google Scholar 

  • Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund HJ (1998) Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259

    PubMed  CAS  Google Scholar 

  • Bootsma RJ, Marteniuk RG, MacKenzie CL, Zaal FT (1994) The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics. Exp Brain Res 98:535–541

    Article  PubMed  CAS  Google Scholar 

  • Castiello U, Bennett KM (1997) The bilateral reach-to-grasp movement of Parkinson’s disease subjects. Brain 120:593–604

    Article  PubMed  Google Scholar 

  • Castiello U, Bennett KM, Stelmach GE (1993) The bilateral reach to grasp movement. Behav Brain Res 56:43–57

    Article  PubMed  CAS  Google Scholar 

  • Chieffi S, Gentilucci M (1993) Coordination between the transport and the grasp components during prehension movements. Exp Brain Res 94:471–477

    Article  PubMed  CAS  Google Scholar 

  • Churchill A, Hopkins B, Rönnqvist L, Vogt S (2000) Vision of the hand and environmental context in human prehension. Exp Brain Res 134:81–89

    Article  PubMed  CAS  Google Scholar 

  • Corballis MC (1997) The genetics and evolution of handedness. Psychol Rev 104:714–727

    Article  PubMed  CAS  Google Scholar 

  • Culham JC, Danckert SL, DeSouza JF, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189

    Article  PubMed  Google Scholar 

  • Gentilucci M, Toni I, Daprati E, Gangitano M (1997) Tactile input of the hand and the control of reaching to grasp movements. Exp Brain Res 114:130–137

    Article  PubMed  CAS  Google Scholar 

  • Gentilucci M, Benuzzi F, Gangitano M, Grimaldi S (2001) Grasp with hand and mouth: a kinematic study on healthy subjects. J Neurophysiol 86:1685–1699

    PubMed  CAS  Google Scholar 

  • Gentilucci M, Roy AC, Stefanini S (2004) Grasping an object naturally or with a tool: are these tasks guided by a common motor representation ? Exp Brain Res 157:496–506

    Article  PubMed  Google Scholar 

  • Healey JM, Liederman J, Geschwind N (1986) Handedness is not an unidimensional trait. Cortex 22:33–53

    PubMed  CAS  Google Scholar 

  • Jakobson LS, Goodale MA (1991) Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Exp Brain Res 86:199–208

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (1986) The formation of finger grip during prehension. A cortically mediated visuomotor pattern. Behav Brain Res 19:99–116

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320

    Article  PubMed  CAS  Google Scholar 

  • Kawashima R, Matsumura M, Sadato N, Naito E, Waki A, Nakamura S, Matsunami K, Fukuda H, Yonekura Y (1998) Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements – a PET study. Eur J Neurosci 10:2254–2260

    Article  PubMed  CAS  Google Scholar 

  • Kuhtz-Buschbeck JP, Stolze H, Jöhnk K, Boczek-Funcke A, Illert M (1998) Development of prehension movements in children: a kinematic study. Exp Brain Res 122:424–432

    Article  PubMed  CAS  Google Scholar 

  • Kuhtz-Buschbeck JP, Sundholm LK, Eliasson AC, Forssberg H (2000) Quantitative assessment of mirror movements in children and adolescents with hemiplegic cerebral palsy. Dev Med Child Neurol 42:728–736

    Article  PubMed  CAS  Google Scholar 

  • Kuhtz-Buschbeck JP, Mahnkopf C, Holzknecht C, Siebner H, Ulmer S, Jansen O (2003) Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. Eur J Neurosci 18:3375–3387

    Article  PubMed  CAS  Google Scholar 

  • Lemon RN (1993) The G. L. Brown Prize Lecture. Cortical control of the primate hand. Exp Physiol 78: 263–301

    PubMed  CAS  Google Scholar 

  • Mason AH, Carnahan H (1999) Target viewing time and velocity effects on prehension. Exp Brain Res 127:83–94

    Article  PubMed  CAS  Google Scholar 

  • Matsumura M, Kawashima R, Naito E, Satoh K, Takahashi T, Yanagisawa T, Fukuda H (1996) Changes in rCBF during grasping in humans examined by PET. Neuroreport 7:749–752

    Article  PubMed  CAS  Google Scholar 

  • Nelson WL (1983) Physical principles for economies of skilled movements. Biol Cybern 46:135–147

    Article  PubMed  CAS  Google Scholar 

  • Paulignan Y, Frak VG, Toni I, Jeannerod M (1997) Influence of object position and size on human prehension movements. Exp Brain Res 114:226–234

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    Article  PubMed  CAS  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Schaefer SY (2004) Interlimb differences in the control of movement extent. J Neurophysiol 92:1374–1383

    Article  PubMed  Google Scholar 

  • Sakata H, Taira M (1994) Parietal control of hand action. Curr Opin Neurobiol 4:847–856

    Article  PubMed  CAS  Google Scholar 

  • Schettino LF, Adamovich SV, Poizner H (2003) Effects of object shape and visual feedback on hand configuration during grasping. Exp Brain Res 151:158–166

    Article  PubMed  Google Scholar 

  • Smeets JB, Brenner E (1999) A new view on grasping. Motor Control 3:237–271

    PubMed  CAS  Google Scholar 

  • Smeets JB, Brenner E (2001) Independent movements of the digits in grasping. Exp Brain Res 139:92–100

    Article  PubMed  CAS  Google Scholar 

  • Smyth MM, Peacock KA, Katamba J (2004) The role of sight of the hand in the development of prehension in childhood. Q J Exp Psychol A 57:269–296

    Article  PubMed  Google Scholar 

  • Tresilian JR, Stelmach GE (1997) Common organization for unimanual and bimanual reach-to-grasp tasks. Exp Brain Res 115:283–299

    Article  PubMed  CAS  Google Scholar 

  • Wallace SA, Weeks DL (1988) Temporal constraints in the control of prehensile movement. J Mot Behav 20:81–105

    PubMed  CAS  Google Scholar 

  • Wing AM, Turton A, Fraser C (1986) Grasp size and accuracy of approach in reaching. J Mot Behav 18:245–260

    PubMed  CAS  Google Scholar 

  • Winges SA, Weber DJ, Santello M (2003) The role of vision on hand preshaping during reach to grasp. Exp Brain Res 152:489–498

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. I. Schröder and Professor M. Illert for their help. This work was financially supported by the Hensel-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann P. Kuhtz-Buschbeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosskopf, A., Kuhtz-Buschbeck, J.P. Grasping with the left and right hand: a kinematic study. Exp Brain Res 168, 230–240 (2006). https://doi.org/10.1007/s00221-005-0083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0083-1

Keywords

Navigation