Skip to main content

Advertisement

Log in

The organization of intralimb and interlimb synergies in response to different joint dynamics

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We sought to understand differences in joint coordination between the dominant and nondominant arms when performing repetitive tasks. The uncontrolled manifold approach was used to decompose the variability of joint motions into components that reflect the use of motor redundancy or movement error. First, we hypothesized that coordination of the dominant arm would demonstrate greater use of motor redundancy to compensate for interaction forces than would coordination of the nondominant arm. Secondly, we hypothesized that when interjoint dynamics were more complex, control of the interlimb relationship would remain stable despite differences in control of individual hand paths. Healthy adults performed bimanual tracing of two orientations of ellipses that resulted in different magnitudes of elbow interaction forces. For the dominant arm, joint variance leading to hand path error was the same for both ellipsis orientations, whereas joint variance reflecting the use of motor redundancy increased when interaction moment was highest. For the nondominant arm, more joint error variance was found when interaction moment was highest, whereas motor redundancy did not differ across orientations. There was no apparent difference in interjoint dynamics between the two arms. Thus, greater skill exhibited by the dominant arm may be related to its ability to utilize motor redundancy to compensate for the effect of interaction forces. However, despite the greater error associated with control of the nondominant hand, control of the interlimb relationship remained stable when the interaction moment increased. This suggests separate levels of control for inter- versus intra-limb coordination in this bimanual task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amazeen EL, Amazeen PG, Treffner PJ, Turvey MT (1997) Attention and handedness in bimanual coordination dynamics. J Exp Psychol Hum Percept Perform 23:1552–1560

    Article  Google Scholar 

  • Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421

    Article  PubMed  Google Scholar 

  • Bastian AJ, Martin TA, Keating JG, Thach WT (1996) Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol 76:492–509

    PubMed  CAS  Google Scholar 

  • Beer RF, Dewald JPA, Rymer WZ (2000) Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp Brain Res 131:305–319

    Article  PubMed  CAS  Google Scholar 

  • Bernstein NA (1967) The coordination and regulation of movements. Pergamon Press, London

    Google Scholar 

  • Buchanan JJ, Ryu YU (2005) The interaction of tactile information and movement amplitude in a multijoint bimanual circle-tracing task: phase transitions and loss of stability. Q J Exp Psychol A 58:769–787

    PubMed  Google Scholar 

  • Buchanan JJ, Ryu YU (2006) One-to-one and polyrhythmic temporal coordination in bimanual circle tracing. J Mot Behav 38:163–184

    Article  PubMed  Google Scholar 

  • Carson RG, Thomas J, Summers JJ, Walters MR, Semjen A (1997) The dynamics of bimanual circle drawing. Q J Exp Psychol A 50:664–683

    Article  PubMed  CAS  Google Scholar 

  • Cole KJ, Abbs JH (1986) Coordination of three-joint digit movements for rapid finger-thumb grasp. J Neurophysiol 55:1407–1423

    PubMed  CAS  Google Scholar 

  • Crosby CA, Wehbe MA, Mawr B (1994) Hand strength: normative values. J Hand Surg [Am] 19:665–670

    Article  CAS  Google Scholar 

  • Cruse H, Wischmeyer E, Bruwer M, Brockfeld P, Dress A (1990) On the cost functions for the control of the human arm movement. Biol Cybern 62:519–528

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Prablanc C (1997) Postural control of three-dimensional prehension movements. J Neurophysiol 77:452–464

    PubMed  CAS  Google Scholar 

  • Diedrichsen J, Hazeltine E, Nurss WK, Ivry RB (2003) The role of the corpus callosum in the coupling of bimanual isometric force pulses. J Neurophysiol 90:2409–2418

    Article  PubMed  Google Scholar 

  • Domkin D, Laczko J, Jaric S, Johansson H, Latash ML (2002) Structure of joint variability in bimanual pointing tasks. Exp Brain Res 143:11–23

    Article  PubMed  Google Scholar 

  • Domkin D, Laczko J, Djupsjobacka M, Jaric S, Latash ML (2005) Joint angle variability in 3D bimanual pointing: uncontrolled manifold analysis. Exp Brain Res 163:44–57

    Article  PubMed  Google Scholar 

  • Donchin O, Gribova A, Steinberg O, Bergman H, Cardoso de Oliveira S, Vaadia E (2001) Local field potentials related to bimanual movements in the primary and supplementary motor cortices. Exp Brain Res 140:46–55

    Article  PubMed  CAS  Google Scholar 

  • Dounskaia N, Ketcham CJ, Stelmach GE (2002) Commonalities and differences in control of various drawing movements. Exp Brain Res 146:11–25

    Article  PubMed  CAS  Google Scholar 

  • Duff SV, Sainburg RL (2007) Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position. Exp Brain Res 179:551–561

    Article  PubMed  Google Scholar 

  • Elliott D, Helsen WF, Chua R (2001) A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychol Bull 127:342–357

    Article  PubMed  CAS  Google Scholar 

  • Flowers K (1975) Handedness and controlled movement. Br J Psychol 66:39–52

    PubMed  CAS  Google Scholar 

  • Franz EA, Eliassen JC, Ivry RB, Gazzaniga MS (1996) Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients. Psychol Sci 7:306–310

    Article  Google Scholar 

  • Franz EA, Rowse A, Ballantine B (2002) Does handedness determine which hand leads in a bimanual task? J Mot Behav 34:402–412

    PubMed  Google Scholar 

  • Gelfand IM, Tsetlin ML (1969) On mathematical modeling of the mechanisms of the central nervous system. Nauka, Moscow

    Google Scholar 

  • Ghez C, Gordon J, Ghilardi MF (1995) Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy. J Neurophysiol 73:361–372

    PubMed  CAS  Google Scholar 

  • Gorniak S, Zatsiorsky VM, Latash ML (2007a) Emerging and disappearing synergies in a hierarchically controlled system. Exp Brain Res 183:259–270

    Article  PubMed  Google Scholar 

  • Gorniak S, Zatsiorsky VM, Latash ML (2007b) Hierarchies of synergies: an example of two-hand, multi-finger tasks. Exp Brain Res 179:167–180

    Article  PubMed  Google Scholar 

  • Hanavan EP (1964) Inertial properties of a 50th percentile male. In: A mathematical model of the human body. AMRL-TR–102. Aerospace Medical Research Laboratory, Wright–Patterson Air Force Base, Ohio

  • Hildreth G (1949) The development and training of hand dominance; developmental tendencies in handedness. J Genet Psychol 75:221–275

    PubMed  CAS  Google Scholar 

  • Kazennikov O, Wicki U, Corboz M, Hyland B, Palmeri A, Rouiller EM, Wiesendanger M (1994) Temporal structure of a bimanual goal-directed movement sequence in monkeys. Eur J Neurosci 6:203–210

    Article  PubMed  CAS  Google Scholar 

  • Kazennikov O, Perrig S, Wiesendanger M (2002) Kinematics of a coordinated goal-directed bimanual task. Behav Brain Res 134:83–91

    Article  PubMed  CAS  Google Scholar 

  • Kelso JAS, Southard DL, Goodman D (1979) On the coordination of two-handed movements. J Exp Psychol Hum Percept Perform 2:229–238

    Google Scholar 

  • Kermadi I, Liu Y, Tempini A, Calciati E, Rouiller EM (1998) Neuronal activity in the primate supplementary motor area and the primary motor cortex in relation to spatio-temporal bimanual coordination. Somatosens Mot Res 15:287–308

    Article  PubMed  CAS  Google Scholar 

  • Krishnamoorthy V, Yang JF, Scholz JP (2005) Joint coordination during quiet stance: effects of vision. Exp Brain Res 164:1–17

    Article  PubMed  Google Scholar 

  • Latash M (2000) There is no motor redundancy in human movements. There is motor abundance. Mot Control 4:259–260

    CAS  Google Scholar 

  • Latash ML, Scholz JF, Danion F, Schöner G (2002) Finger coordination during discrete and oscillatory force production tasks. Exp Brain Res 146:419–432

    Article  PubMed  Google Scholar 

  • Latash ML, Danion F, Scholz JP, Zatsiorsky VM, Schöner G (2003) Approaches to analysis of handwriting as a task of coordinating a redundant motor system. Hum Mov Sci 22:153–171

    Article  PubMed  Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:276–308

    Google Scholar 

  • Lavrysen A, Heremans E, Peeters R, Wenderoth N, Helsen WF, Feys P, Swinnen SP (2008) Hemispheric asymmetries in eye-hand coordination. Neuroimage 39:1938–1949

    Article  PubMed  Google Scholar 

  • Li Y, Levin O, Forner-Cordero A, Swinnen SP (2005) Interactions between interlimb and intralimb coordination during the performance of bimanual multijoint movements. Exp Brain Res 163:515–526

    Article  PubMed  Google Scholar 

  • Martin V, Scholz JP, Schöner G (2008) Redundancy, self-motion and motor control. Neural Comput (in press)

  • McDonald PV, van Emmerik RE, Newell KM (1989) The effects of practice on limb kinematics in a throwing task. J Mot Behav 21:245–264

    PubMed  CAS  Google Scholar 

  • Murray R, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton

    Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Reisman DS, Scholz JP (2003) Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis. Brain 126:2510–2527

    Article  PubMed  Google Scholar 

  • Ryu YU, Buchanan JJ (2004) Amplitude scaling in a bimanual circle-drawing task: pattern switching and end-effector variability. J Mot Behav 36:265–279

    Article  PubMed  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73:820–835

    PubMed  CAS  Google Scholar 

  • Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7:1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Kubo M (2008) Implications of research on motor redundancy for rehabilitation of neurological patients. Jpn Phys Ther J (in press)

  • Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Reisman D, Schöner G (2001) Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task. Exp Brain Res 141:485–500

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Kang N, Patterson D, Latash ML (2003) Uncontrolled manifold analysis of single trials during multi-finger force production by persons with and without Down syndrome. Exp Brain Res 153:45–58

    Article  PubMed  Google Scholar 

  • Schöner G (1995) Recent developments and problems in human movement science and their conceptual implications. Ecol Psychol 7:291–314

    Article  Google Scholar 

  • Schwartz AB, Moran DW (2000) Arm trajectory and representation of movement processing in motor cortical activity. Eur J Neurosci 12:1851–1856

    Article  PubMed  CAS  Google Scholar 

  • Semjen A, Summers JJ, Cattaert D (1995) Hand coordination in bimanual circle drawing. J Exp Psychol Hum Percept Perform 21:1139–1157

    Article  Google Scholar 

  • Sternad D (2007) Towards a unified theory for rhythmic and discrete movements-behavioral, modeling and imaging results. In: Fuchs A, Jirsa V (eds) Coordination: neural, behavioral and social dynamics. Springer, New York, pp 105–136

    Google Scholar 

  • Teeken JC, Adam JJ, Paas FG, van Boxtel MP, Houx PJ, Jolles J (1996) Effects of age and gender on discrete and reciprocal aiming movements. Psychol Aging 11:195–198

    Article  PubMed  CAS  Google Scholar 

  • Tseng YW, Scholz JP (2005) Unilateral vs. bilateral coordination of circle-drawing tasks. Acta Psychol (Amst) 120:172–198

    Article  Google Scholar 

  • Tseng Y, Scholz JP, Schöner G (2002) Goal-equivalent joint coordination in pointing: effect of vision and arm dominance. Mot Control 6:183–207

    Google Scholar 

  • Tseng Y, Scholz JP, Schöner G, Hotchkiss L (2003) Effect of accuracy constraint on joint coordination during pointing movements. Exp Brain Res 149:276–288

    PubMed  Google Scholar 

  • Tseng Y, Scholz JP, Martin V (2006) Effects of movement frequency and joint kinetics on the joint coordination underlying bimanual circle drawing. J Mot Behav 38:383–404

    Article  PubMed  Google Scholar 

  • Vereijken B, Whiting HTA, Newell KM, van Emmerik RE (1992) Free(z)ing degrees of freedom in skill acquisition. J Mot Behav 24:133–142

    Google Scholar 

  • Walters MR, Carson RG (1997) A method for calculating the circularity of movement trajectories. J Mot Behav 29:72–84

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sainburg RL (2007) The dominant and nondominant arms are specialized for stabilizing different features of task performance. Exp Brain Res 178:565–570

    Article  PubMed  Google Scholar 

  • Wei K, Wertman G, Sternad D (2003) Interactions between rhythmic and discrete components in a bimanual task. Mot Control 7:134–154

    Google Scholar 

  • Wiesendanger M, Serrien DJ (2001) Toward a physiological understanding of human dexterity. News Physiol Sci 16:228–233

    PubMed  CAS  Google Scholar 

  • Wiesendanger M, Kaluzny P, Kazennikov O, Palmeri A, Perrig S (1994) Temporal coordination in bimanual actions. Can J Physiol Pharmacol 72:591–594

    PubMed  CAS  Google Scholar 

  • Winter DA (1979) Biomechanics of human movement. Wiley, New York

    Google Scholar 

  • Wuyts IJ, Summers JJ, Carson RG, Byblow WD, Semjen A (1996) Attention as a mediating variable in the dynamics of bimanual coordination. Hum Mov Sci 15:877–897

    Article  Google Scholar 

  • Yang JF, Scholz JP (2005) Learning a throwing task is associated with differential changes in the use of motor abundance. Exp Brain Res 163:137–158

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by grant number NS050880 from the National Institute of Neurological Disorders and Stroke. We also thank Valere Martin for his help on deriving the dynamics equations.

Conflict of interest statement

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Scholz.

Appendix

Appendix

To compute the equations of motion, the Lagrangian of the arm was formulated in terms of joint angles and joint velocities, and then solved analytically using Mathematica® 5.0 (Wolfram Research, Inc.). The general formulation of equations of motion can be represented as

$$ M(\theta ) \times \ddot{\theta } + H(\theta ,\dot{\theta }) = \tau_{\text{muscle}} $$
(5)

where \( H(\theta ,\dot{\theta }) \) is a combination of Coriolis and centrifugal forces acting at each joint and its magnitude depends on the motion and position of other joints. τ muscle is the generalized muscle moment (MM) that includes active muscle activity and passive forces arising from the viscoelastic properties of muscles, tendons, ligaments and periarticular soft tissues. There is no gravitational moment, since movement is constrained in a horizontal plane. M(θ) is a 4 × 4, configuration-dependent inertial matrix; \( \ddot{\theta },\;\dot{\theta }\;{\text{and}}\;\theta \) are the vectors of joint acceleration, velocity and angle, respectively. The inertial matrix M(θ) has diagonal entries corresponding to the inertia of a given segment of interest and off-diagonal entries capturing the effect on each joint based on the acceleration of the other joints. By separating out the two components of the inertial matrix, M d(θ) and M nd(θ), Eq. 5 can be written as:

$$ M_{\text{d}} (\theta ) \times \ddot{\theta } = - M_{\text{nd}} (\theta ) \times \ddot{\theta } - H(\theta ,\dot{\theta }) + \tau_{\text{muscle}} $$
(6)

Equation 6 can be further represented as the following, by grouping the appropriate terms for interaction moments

$$ {\text{NM}} = {\text{IM}} + {\text{MM}} $$
(7)

The net moment (NM) is proportional to joint acceleration and is directly responsible for motion of this joint. IM is the interaction moment that depends on mutual interactions with the other joints. MM represents the generalized muscle moment.

The individual terms of the M and H matrices are listed below. Note that the diagonal terms are M 1,1, M2,2, M3,3, M4,4, while the off diagonal terms are M i,j, where i ≠ j; i and j = 1, 2, 3, 4. The same arrangement applies to the H matrix. Notation: θ i angle of the ith joint; l i length of the ith segment; r i position of the center of mass of the ith joint from the proximal end of that segment; m i mass of the ith segment; I i moment of inertia of the ith segment. The number representing each arm segment and joint angle (in parentheses): 1 clavicle (scapula); 2 upper arm (shoulder); 3 forearm (elbow); 4 hand (wrist).

$$ \begin{aligned} M(\theta )_{1,1} & = I_{1} + I_{2} + I_{3} + I_{4} + m_{1} \cdot r_{1}^{2} + (m_{2} + m_{3} + m_{4} ) \cdot l_{1}^{2} + (m_{3} + m_{4} ) \cdot l_{2}^{2} + m_{2} \cdot r_{2}^{2} + m_{4} \cdot \\ & l_{3}^{2} + m_{3} \cdot r_{3}^{2} + m_{4} \cdot r_{4}^{2} + m_{3} \cdot (2 \cdot l_{1} \cdot l_{2} \cdot \hbox{cos}(\theta_{2} ) + 2 \cdot l_{1} \cdot r_{3} \cdot \hbox{cos}(\theta_{2} + \theta_{3} ) + 2 \cdot l_{2} \cdot \\ & r_{3} \cdot \hbox{cos}(\theta_{3} )) + 2 \cdot m_{2} \cdot l_{1} \cdot r_{2} \hbox{cos}(\theta_{2} ) + m_{4} \cdot (2 \cdot l_{1} \cdot l_{2} \cdot \hbox{cos}(\theta_{2} ) + 2 \cdot l_{1} \cdot l_{3} \cdot \\ & \hbox{cos}(\theta_{2} + \theta_{3} ) + 2 \cdot l_{1} \cdot r_{4} \cdot \hbox{cos}(\theta_{2} + \theta_{3} + \theta_{4} ) + 2 \cdot l_{2} \cdot l_{3} \cdot \hbox{cos}(\theta_{3} ) + 2 \cdot l_{2} \cdot r_{4} \cdot \\ & \hbox{cos}(\theta_{3} + \theta_{4} ) + 2 \cdot l_{3} \cdot r_{4} \cdot \hbox{cos}(\theta_{4} )) \\ \end{aligned} $$
$$ \begin{aligned} M(\theta )_{1,2} & = I_{2} + I_{3} + I_{4} + m_{2} \cdot r_{2}^{2} + m_{3} \cdot r_{3}^{2} + m_{4} \cdot r_{4}^{2} + m_{2} \cdot l_{1} \cdot r_{2} \cdot \hbox{cos}(\theta_{2} ) + (m_{3} + m_{4} ) \cdot l_{2}^{2} + \\ & m_{4} \cdot l_{3}^{2} + m_{3} \cdot (l_{1} \cdot l_{2} \cdot \hbox{cos}(\theta_{2} ) + l_{1} \cdot r_{3} \cdot \hbox{cos}(\theta_{2} + \theta_{3} ) + 2 \cdot l_{2} \cdot r_{3} \cdot \hbox{cos}(\theta_{3} )) + m_{4} \cdot \\ & (l_{1} \cdot l_{2} \cdot \hbox{cos}(\theta_{2} ) + l_{1} \cdot l_{3} \cdot \hbox{cos}(\theta_{2} + \theta_{3} ) + l_{1} \cdot r_{4} \cdot \hbox{cos}(\theta_{2} + \theta_{3} + \theta_{4} ) + 2 \cdot l_{2} \cdot l_{3} \cdot \\ & \hbox{cos}(\theta_{3} ) + 2 \cdot l_{2} \cdot r_{4} \cdot \hbox{cos}(\theta_{3} + \theta_{4} ) + 2 \cdot l_{3} \cdot r_{4} \cdot \hbox{cos}(\theta_{4} )) \\ \end{aligned} $$
$$ \begin{aligned} M(\theta )_{1,3} & = I_{3} + I_{4} + m_{3} \cdot r_{3}^{2} + m_{4} \cdot r_{4}^{2} + m_{4} \cdot l_{3}^{2} + m_{3} \cdot (l_{1} \cdot r_{3} \cdot \hbox{cos}(\theta_{2} + \theta_{3} ) + l_{2} \cdot r_{3} \cdot \hbox{cos}(\theta_{3} )) + \\ & m_{4} \cdot (l_{1} \cdot l_{3} \cdot \hbox{cos}(\theta_{2} + \theta_{3} ) + l_{1} \cdot r_{4} \cdot \hbox{cos}(\theta_{2} + \theta_{3} + \theta_{4} ) + l_{2} \cdot l_{3} \cdot \hbox{cos}(\theta_{3} ) + l_{2} \cdot \\ & r_{4} \cdot \hbox{cos}(\theta_{3} + \theta_{4} ) + 2 \cdot l_{3} \cdot r_{4} \cdot \hbox{cos}(\theta_{4} )) \\ M(\theta )_{1,4} & = I_{4} + m_{4} \cdot r_{4}^{2} + m_{4} \cdot (l_{1} \cdot r_{4} \cdot \hbox{cos}(\theta_{2} + \theta_{3} + \theta_{4} ) + l_{2} \cdot r_{4} \cdot \hbox{cos}(\theta_{3} + \theta_{4} ) + l_{3} \cdot r_{4} \cdot \hbox{cos}(\theta_{4} )) \\ M(\theta )_{2,1} & = M(\theta )_{1,2} \\ M(\theta )_{2,2} & = I_{2} + I_{3} + I_{4} + m_{2} \cdot r_{2}^{2} + m_{3} \cdot l_{2}^{2} + m_{3} \cdot r_{3}^{2} + 2 \cdot m_{3} \cdot l_{2} \cdot r_{3} \cdot \hbox{cos}(\theta_{3} ) + \\ & m_{4} \cdot (l_{2}^{2} + l_{3}^{2} + r_{4}^{2} + 2 \cdot l_{2} \cdot l_{3} \cdot \hbox{cos}(\theta_{3} )) + 2 \cdot l_{2} \cdot r_{4} \cdot \hbox{cos}(\theta_{3} + \theta_{4} ) + 2 \cdot l_{3} \cdot r_{4} \cdot \hbox{cos}(\theta_{4} )) \\ \end{aligned} $$
$$ \begin{aligned} M(\theta )_{2,3} & = I_{4} + I_{3} + m_{3} \cdot r_{3}^{2} + m_{3} \cdot l_{2} \cdot r_{3} \cdot \hbox{cos}(\theta_{3} ) + m_{4} \cdot (l_{3}^{2} + r_{4}^{2} + l_{2} \cdot l_{3} \cdot \hbox{cos}(\theta_{3} ) + \\ & l_{2} \cdot r_{4} \cdot \hbox{cos}(\theta_{3} + \theta_{4} ) + 2 \cdot l_{3} \cdot r_{4} \cdot \hbox{cos}(\theta_{4} )) \\ M(\theta )_{2,4} & = I_{4} + m_{4} \cdot r_{4}^{2} + m_{4} \cdot l_{2} \cdot r_{4} \cdot \hbox{cos}(\theta_{3} + \theta_{4} ) + m_{4} \cdot l_{3} \cdot r_{4} \cdot \hbox{cos}(\theta_{4} ) \\ M(\theta )_{3,1} & = M(\theta )_{1,3} \\ M(\theta )_{3,2} & = M(\theta )_{2,3} \\ M(\theta )_{3,3} & = I_{3} + I_{4} + m_{3} \cdot r_{3}^{2} + m_{4} \cdot (l_{3}^{2} + r_{4}^{2} + 2 \cdot l_{3} \cdot r_{4} \cdot \hbox{cos}(\theta_{4} )) \\ M(\theta )_{3,4} & = I_{4} + m_{4} \cdot r_{4}^{2} + m_{4} \cdot l_{3} \cdot r_{4} \cdot \hbox{cos}(\theta_{4} ) \\ M(\theta )_{4,1} & = M(\theta )_{1,4} \\ M(\theta )_{4,2} & = M(\theta )_{2,4} \\ M(\theta )_{4,3} & = M(\theta )_{3,4} \\ M(\theta )_{4,4} & = m_{4} \cdot r_{4}^{2} + I_{4} \\ \end{aligned} $$
$$ \begin{aligned} H(\theta ,\dot{\theta })_{1} & = (2 \cdot \mathop {\dot{\theta }}\nolimits_{1} \cdot \mathop {\dot{\theta }}\nolimits_{3} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{2} \cdot \mathop {\dot{\theta }}\nolimits_{3} + \mathop {\dot{\theta }}\nolimits_{3}^{2} ) \cdot ( - m_{3} \cdot l_{1} \cdot r_{3} \cdot \hbox{sin}(\theta_{2} + \theta_{3} ) - m_{3} \cdot l_{2} \cdot r_{3} \\ & \hbox{sin}(\theta_{3} )) + (\mathop {\dot{\theta }}\nolimits_{2}^{2} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{1} \cdot \mathop {\dot{\theta }}\nolimits_{2} ) \cdot (\hbox{sin}(\theta_{2} ) \cdot ( - m_{2} \cdot l_{1} \cdot r_{2} - m_{3} \cdot l_{1} \cdot l_{2} ) \\ & - m_{3} \cdot l_{1} \cdot r_{3} \cdot \hbox{sin}(\theta_{2} + \theta_{3} )) - m_{4} \cdot ((2 \cdot \mathop {\dot{\theta }}\nolimits_{1} \cdot \mathop {\dot{\theta }}\nolimits_{4} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{2} \cdot \mathop {\dot{\theta }}\nolimits_{4} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{3} \cdot \mathop {\dot{\theta }}\nolimits_{4} + \mathop {\dot{\theta }}\nolimits_{4}^{2} ) \\ & \cdot (l_{3} \cdot r_{4} \cdot \hbox{sin}(\theta_{4} ) + l_{2} \cdot r_{4} \cdot \hbox{sin}(\theta_{3} + \theta_{4} ) + l_{1} \cdot r_{4} \cdot \hbox{sin}(\theta_{2} + \theta_{3} + \theta_{4} )) + (2 \cdot \mathop {\dot{\theta }}\nolimits_{1} \cdot \mathop {\dot{\theta }}\nolimits_{3} + \\ & 2 \cdot \mathop {\dot{\theta }}\nolimits_{2} \cdot \mathop {\dot{\theta }}\nolimits_{3} + \mathop {\dot{\theta }}\nolimits_{3}^{2} ) \cdot (l_{2} \cdot r_{4} \cdot \hbox{sin}(\theta_{3} + \theta_{4} ) + l_{1} \cdot l_{3} \cdot \hbox{sin}(\theta_{2} + \theta_{3} ) + l_{2} \cdot l_{3} \cdot \hbox{sin}(\theta_{3} ) + \\ & l_{1} \cdot r_{4} \cdot \hbox{sin}(\theta_{2} + \theta_{3} + \theta_{4} )) + (2 \cdot \mathop {\dot{\theta }}\nolimits_{1} \cdot \mathop {\dot{\theta }}\nolimits_{2} + \mathop {\dot{\theta }}\nolimits_{2}^{2} ) \cdot ({\l}_{1} \cdot r_{4} \cdot \hbox{sin}(\theta_{2} + \theta_{3} + \theta_{4} ) + l_{1} \cdot l_{3} \cdot \\ & \hbox{sin}(\theta_{2} + \theta_{3} ) + l_{1} \cdot l_{2} \cdot \hbox{sin}(\theta_{2} )) \\ \end{aligned} $$
$$ \begin{aligned} H(\theta ,\dot{\theta })_{2} & = \mathop {\dot{\theta }}\nolimits_{1}^{2} \cdot \hbox{sin}(\theta_{2} ) \cdot (m_{2} \cdot l_{1} \cdot r_{2} + m_{3} \cdot l_{1} \cdot l_{2} ) + m_{3} \cdot r_{3} \cdot l_{1} \cdot \hbox{sin}(\theta_{2} + \theta_{3} ) \cdot \mathop {\dot{\theta }}\nolimits_{1}^{2} - \\ & m_{3} \cdot l_{2} \cdot r_{3} \cdot \hbox{sin}(\theta_{3} ) \cdot (2 \cdot \mathop {\dot{\theta }}\nolimits_{3} \cdot \mathop {\dot{\theta }}\nolimits_{1} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{3} \cdot \mathop {\dot{\theta }}\nolimits_{2} + \mathop {\dot{\theta }}\nolimits_{3}^{2} ) + \mathop {\dot{\theta }}\nolimits_{1}^{2} \cdot (m_{4} \cdot l_{1} \cdot l_{2} \cdot \hbox{sin}(\theta_{2} ) + \\ & m_{4} \cdot l_{1} \cdot l_{3} \cdot \hbox{sin}(\theta_{2} + \theta_{3} ) + m_{4} \cdot l_{1} \cdot r_{4} \cdot \hbox{sin}(\theta_{2} + \theta_{3} + \theta_{4} )) - m_{4} \cdot ((l_{2} \cdot l_{3} \cdot \hbox{sin}(\theta_{3} ) \\ & + l_{2} \cdot r_{4} \cdot \hbox{sin}(\theta_{3} + \theta_{4} )) \cdot (2 \cdot \mathop {\dot{\theta }}\nolimits_{3} \cdot \mathop {\dot{\theta }}\nolimits_{1} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{3} \cdot \mathop {\dot{\theta }}\nolimits_{2} + \mathop {\dot{\theta }}\nolimits_{3}^{2} ) + (l_{2} \cdot r_{4} \cdot \hbox{sin}(\theta_{3} + \theta_{4} ) + \\ & l_{3} \cdot r_{4} \cdot \hbox{sin}(\theta_{4} )) \cdot (2 \cdot \mathop {\dot{\theta }}\nolimits_{1} \cdot \mathop {\dot{\theta }}\nolimits_{4} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{2} \cdot \mathop {\dot{\theta }}\nolimits_{4} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{3} \cdot \mathop {\dot{\theta }}\nolimits_{4} + \mathop {\dot{\theta }}\nolimits_{4}^{2} ) \\ \end{aligned} $$
$$ \begin{aligned} H(\theta ,\dot{\theta })_{3} & = (\mathop {\dot{\theta }}\nolimits_{1}^{2} + \mathop {\dot{\theta }}\nolimits_{2}^{2} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{1} \cdot \mathop {\dot{\theta }}\nolimits_{2} ) \cdot (m_{3} \cdot l_{2} \cdot r_{3} \cdot \hbox{sin}(\theta_{3} ) + m_{4} \cdot l_{2} \cdot l_{3} \cdot \hbox{sin}(\theta_{3} ) + m_{4} \cdot l_{2} \cdot r_{4} \cdot \\ & \hbox{sin}(\theta_{3} + \theta_{4} )) + \mathop {\dot{\theta }}\nolimits_{1}^{2} \cdot (m_{3} \cdot l_{1} \cdot r_{3} \cdot \hbox{sin}(\theta_{2} + \theta_{3} ) + m_{4} \cdot{\l}_{1} \cdot l_{3} \cdot \hbox{sin}(\theta_{2} + \theta_{3} ) \\ & + m_{4} \cdot l_{1} \cdot r_{4} \cdot \hbox{sin}(\theta_{2} + \theta_{3} + \theta_{4} )) - m_{4} \cdot l_{3} \cdot r_{4} \cdot \hbox{sin}(\theta_{4} ) \cdot (2 \cdot \mathop {\dot{\theta }}\nolimits_{4} \cdot \mathop {\dot{\theta }}\nolimits_{1} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{4} \cdot \mathop {\dot{\theta }}\nolimits_{2} + \\ & 2 \cdot \mathop {\dot{\theta }}\nolimits_{4} \cdot \mathop {\dot{\theta }}\nolimits_{3} + \mathop {\dot{\theta }}\nolimits_{4}^{2} ) \\ \end{aligned} $$
$$ \begin{aligned} H(\theta ,\dot{\theta })_{4} & = \mathop {\dot{\theta }}\nolimits_{1}^{2} \cdot m_{4} \cdot l_{1} \cdot r_{4} \cdot \hbox{sin}(\theta_{2} + \theta_{3} + \theta_{4} ) + (\mathop {\dot{\theta }}\nolimits_{1} + \mathop {\dot{\theta }}\nolimits_{2} )^{2} \cdot m_{4} \cdot l_{2} \cdot r_{4} \cdot \hbox{sin}(\theta_{3} + \theta_{4} ) + \\ & m_{4} \cdot l_{3} \cdot r_{4} \cdot \hbox{sin}(\theta_{4} ) \cdot ((\mathop {\dot{\theta }}\nolimits_{1} + \mathop {\dot{\theta }}\nolimits_{2} )^{2} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{1} \cdot \mathop {\dot{\theta }}\nolimits_{3} + 2 \cdot \mathop {\dot{\theta }}\nolimits_{2} \cdot \mathop {\dot{\theta }}\nolimits_{3} + \mathop {\dot{\theta }}\nolimits_{3}^{2} ) \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, Yw., Scholz, J.P. & Galloway, J.C. The organization of intralimb and interlimb synergies in response to different joint dynamics. Exp Brain Res 193, 239–254 (2009). https://doi.org/10.1007/s00221-008-1616-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1616-1

Keywords

Navigation