Skip to main content
Log in

Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We recently provided evidence that the dominant and nondominant arms are specialized for controlling different aspects of reaching movements. In this study, we test whether these specializations lead to qualitatively different adaptive mechanisms, when exposed to novel inertial dynamics. Two groups of six right-handed adults performed a reaching task toward a single target with either the dominant or nondominant arm. After 39 trials of task familiarization without a load, subjects performed 180 trials with a 1.5 kg mass, positioned 25 cm lateral to the forearm. To assess the time course of adaptation, we quantified changes in movement direction and linearity, and to assess the quality of adaptation, we randomly interspersed aftereffect trials and generalization trials. The former were assessed by removing the mass and the latter by changing the location of the movement in the workspace. Whereas, final position accuracy improved to the same extent for both arms, initial movement direction improved only for the dominant arm. In contrast, nondominant arm adaptation occurred mainly by making more effective corrections for persistent errors in initial direction. Consistent with these findings, aftereffect trials, an indicator of feedforward control processes, showed progressive increases in error for only the dominant arm. In addition, substantial generalization only occurred for the dominant arm. These results support our hypothesis that interlimb differences in control mechanisms produce different patterns of adaptation to novel inertial dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bagesteiro LB, Sainburg RL (2002) Handedness: Dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421

    Article  PubMed  Google Scholar 

  • Bagesteiro LB, Sainburg RL (2003) Nondominant arm advantages in load compensation during rapid elbow joint movements. J Neurophysiol 90:1503–1513

    Article  PubMed  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81(1):39–60

    Article  PubMed  CAS  Google Scholar 

  • Bizzi E, Accornero N, Chapple W, Hogan N (1982) Arm trajectory formation in monkeys. Exp Brain Res 46(1):139–143

    Article  PubMed  CAS  Google Scholar 

  • Bizzi E, Hogan N, Mussa-Ivaldi FA, Giszter S (1992) Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci 15(4):603–613

    Google Scholar 

  • Cisek P, Crammond DJ, Kalaska JF (2003) Neural activity in primary motor and dorsal premotor cortex in reaching tasks with the contralateral versus ipsilateral arm. J Neurophysiol 89(2):922–942

    Article  PubMed  Google Scholar 

  • Criscimagna-Hemminger SE, Donchin O, Gazzaniga MS, Shadmehr R (2003) Learned dynamics of reaching movements generalize from dominant to nondominant arm. J Neurophysiol 89:168–176

    Article  PubMed  Google Scholar 

  • Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscles. Biophysics 11:565–578

    Google Scholar 

  • Feldman AG (1986) Once more on the equilibrium-point hypothesis (λ model) for motor control. J Mot Behav 18:17–54

    PubMed  CAS  Google Scholar 

  • Gandolfo F, Li C, Benda BJ, Padoa-Schioppa C, Bizzi E (2001) Cortical correlates of learning in monkeys adapting to a new dynamical environment. Proc Natl Acad Sci 97:2259–2263

    Article  Google Scholar 

  • Geschwind N (1975) The apraxias: neural mechanisms in disorders of learned movements. Am Sci 63:188–195

    PubMed  CAS  Google Scholar 

  • Gottleib GL (1996) Muscle compliance: implications for the control of movement. Exerc Sport Sci Rev 24:1–34

    Google Scholar 

  • Gribble PL, Ostry DJ, Sanguineti V, Laboissiere R (1998) Are complex control signals required for human arm movement? J Neurophysiol 79(3):1409–1424

    PubMed  CAS  Google Scholar 

  • Haaland KY, Prestopnik JL, Knight RT, Lee RR (2004) Hemispheric asymmetries for kinematic and positional aspects of reaching. Brain 127(Pt 5):1145–1158

    Article  PubMed  Google Scholar 

  • Hirayama M, Kawato M, Jordan MI (1993) The cascade neural network model and a speed-accuracy trade-off of arm movement. J Mot Behav 25(3):162–174

    Article  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Ashe J, Georgopoulos AP, Merkle H, Ellerman JM, Menon RS, Ogawa S (1993a) Functional imaging of human motor cortex at high magnetic field. J Neurophysiol 69:297–302

    CAS  Google Scholar 

  • Kim SG, Ashe J, Hendrich K, Ellerman JM, Merkle H, Ugurbil K, Georgopoulos AP (1993b) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  CAS  Google Scholar 

  • Krakauer JW, Ghilardi M-F, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2(11):1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Lackner JR, DiZio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313

    PubMed  CAS  Google Scholar 

  • Lackner JR, Dizio PA (2002) Adaptation to Coriolis force perturbation of movement trajectory; role of proprioceptive and cutaneous somatosensory feedback. Adv Exp Med Biol 508:69–78

    PubMed  Google Scholar 

  • Lackner JR, Dizio PA (2003) Adaptation to rotating artificial gravity environments. J Vestib Res 13(4–6):321–330

    PubMed  Google Scholar 

  • Laszlo JL, Baguley RA, Bairstow PJ (1970) Bilateral transfer in tapping skill in the absence of peripheral information. J Mot Behav 2:271

    Google Scholar 

  • Latash ML (1992) Independent control of joint stiffness in the framework of the equilibrium hypothesis. Biol Cybern 67(4):377–384

    Article  PubMed  CAS  Google Scholar 

  • Liepmann H (1905) Die linke Hemisphäre und das Handeln. Münchener Medizinische Wochenschrift 49:2375–2378

    Google Scholar 

  • Milner TE, Franklin DW (2005) Impedance control and internal model use during the initial stage of adaptation to novel dynamics in humans. J Physiol 567(Pt 2):651–664

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 221:275–288

    Article  Google Scholar 

  • Parlow SE, Kinsbourne M (1989) Asymmetrical transfer of training between hands: Implications for interhemispheric communication in normal brain. Brain Cogn 11:98–113

    Article  PubMed  CAS  Google Scholar 

  • Polit A, Bizzi E (1978) Processes controlling arm movements in monkeys. Science 201:1235–1237

    Article  PubMed  CAS  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL, Kalakanis D (2000) Differences in control of arm dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145(4):437–447

    Article  PubMed  Google Scholar 

  • Sainburg RL, Ghez C, Kalakanis D (1999) Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol 81:1045–1056

    PubMed  CAS  Google Scholar 

  • Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA (2000) Persistance of motor adaptation during constrained, multi-joint, arm movements. J Neurophysiol 84:853–862

    PubMed  CAS  Google Scholar 

  • Shadmehr R (2004) Generalization as a behavioral window to the neural mechanisms of learning internal models. Hum Mov Science 23:543–568

    Article  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi RA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Taylor HG, Heilman KM (1980) Left-hemisphere motor dominance in righthanders. Cortex 16(4):587–603

    PubMed  CAS  Google Scholar 

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primatives. Nature 407(6805):742–747

    Article  PubMed  CAS  Google Scholar 

  • Thoroughman KA, Taylor JA (2005) Rapid reshaping of human motor generalization. J Neurosci 25(39):48–53

    Article  CAS  Google Scholar 

  • Thut G, Cook ND, Regard M, Leenders KL, Halsband U, Landis T (1996) Intermanual transfer of proximal and distal motor engrams in humans. Exp Brain Res 108:321–327

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sainburg RL (2003) Mechanisms underlying interlimb transfer of visuomotor rotations. Exp Brain Res 149:520–526

    PubMed  Google Scholar 

  • Wang J, Sainburg RL (2004a) Interarm transfer of novel inertial dynamics is asymmetrical. J Neurophysiol 92:349–360

    Article  Google Scholar 

  • Wang J, Sainburg RL (2004b) Limitations in interlimb transfer of visuomotor rotations. Exp Brain Res 155(1):1–8

    Article  Google Scholar 

  • Wang J, Sainburg RL (2006) The symmetry of interarm transfer depends on workspace locations. Exp Brain Res 170(4):464–471

    Article  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Exp Brain Res 103(3):460–470

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health, National Institute of Child Health and Human development grant #R01HD39311. We thank Dr. Toby Mordkoff for scholarly discussions regarding this manuscript and advice regarding statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Sainburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duff, S.V., Sainburg, R.L. Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position. Exp Brain Res 179, 551–561 (2007). https://doi.org/10.1007/s00221-006-0811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0811-1

Keywords

Navigation