Skip to main content
Log in

The dominant and nondominant arms are specialized for stabilizing different features of task performance

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We have previously proposed a model of motor lateralization, in which the two arms are differentially specialized for complementary control processes. During aimed movements, the dominant arm shows advantages for coordinating intersegmental dynamics as required for specifying trajectory speed and direction, while the nondominant arm shows advantages in controlling limb impedance, as required for accurate final position control. We now directly test this model of lateralization by comparing performance of the two arms under two different tasks: one in which reaching movement is made from one fixed starting position to three different target positions; and the other in which reaching is made from three different starting positions to one fixed target position. For the dominant arm, performance was most accurate when reaching from one fixed starting position to multiple targets. In contrast, nondominant arm performance was most accurate when reaching toward a single target from multiple start locations. These findings contradict the idea that motor lateralization reflects a global advantage of one “dominant” hemisphere/limb system. Instead, each hemisphere/limb system appears specialized for stabilizing different aspects of task performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421

    Article  PubMed  Google Scholar 

  • Bagesteiro LB, Sainburg RL (2003) Nondominant arm advantages in load compensation during rapid elbow joint movements. J Neurophysiol 90:1503–1513

    Article  PubMed  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    Article  PubMed  CAS  Google Scholar 

  • Bizzi E, Accornero N, Chapple W, Hogan N (1982) Arm trajectory formation in monkeys. Exp Brain Res 46:139–143

    Article  PubMed  CAS  Google Scholar 

  • Cisek P, Crammond DJ, Kalaska JF (2003) Neural activity in primary motor and dorsal premotor cortex in reaching tasks with the contralateral versus ipsilateral arm. J Neurophysiol 89:922–942

    Article  PubMed  Google Scholar 

  • Duff SV, Sainburg RL (2006) Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position. Exp Brain Res, Epub ahead of print

  • Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31:14–27

    PubMed  CAS  Google Scholar 

  • Fetz EE, Cheney PD, German DC (1976) Corticomotoneuronal connections of precentral cells detected by postspike averages of EMG activity in behaving monkeys. Brain Res 114:505–510

    Article  PubMed  CAS  Google Scholar 

  • Fu QG, Suarez JI, Ebner TJ (1993) Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys. J Neurophysiol 70:2097–2116

    PubMed  CAS  Google Scholar 

  • Geschwind N (1975) The apraxias: neural mechanisms of disorders of learned movement. Am Sci 63:188–195

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Kalaska JR, Caminiti R, Massey JT (1983) Interruption of motor cortical discharge subserving aimed arm movements. Exp Brain Res 49:327–340

    Article  PubMed  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99:97–111

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb GL (1996) On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms. J Neurophysiol 76:3207–3229

    PubMed  CAS  Google Scholar 

  • Hirayama M, Kawato M, Jordan MI (1993) The cascade neural network model and a speed accuracy trade-off of arm movement. J Mot Behav 25:162–174

    Article  PubMed  Google Scholar 

  • Jaric S, Corcos DM, Gottlieb GL, Ilic DB, Latash ML (1994) The effects of practice on movement distance and final position reproduction: implications for the equilibrium-point control of movements. Exp Brain Res 100:353–359

    Article  PubMed  CAS  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285:2136–2139

    Article  PubMed  CAS  Google Scholar 

  • Kakei S, Hoffman DS. Strick PL (2001) Direction of action is represented in the ventral premotor cortex. Nat Neurosci 4:1020–1025

    Article  PubMed  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  PubMed  CAS  Google Scholar 

  • Kelso JA, Holt KG (1980) Exploring a vibratory systems analysis of human movement production. J Neurophysiol 43:1183–1196

    PubMed  CAS  Google Scholar 

  • Kettner RE, Schwartz AB, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three- dimensional space. III. Positional gradients and population coding of movement direction from various movement origins. J Neurosci 8:2938–2947

    PubMed  CAS  Google Scholar 

  • Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  PubMed  CAS  Google Scholar 

  • Kurata K (1993) Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude and direction of wrist movements. J Neurophysiol 69:187–200

    PubMed  CAS  Google Scholar 

  • Kutas M, Donchin E (1974) Studies of squeezing: handedness, responding hand, response force, and asymmetry of readiness potential. Science 186:545–548

    Article  PubMed  CAS  Google Scholar 

  • Lackner JR, DiZio P (1998) Adaptation in a rotating artificial gravity environment. Brain Res Brain Res Rev 28:194–202

    Article  PubMed  CAS  Google Scholar 

  • Latash ML (1992) Independent control of joint stiffness in the framework of the equilibrium-point hypothesis. Biol Cybern 67:377–384

    Article  PubMed  CAS  Google Scholar 

  • Liepmann H (1905) Die linke Hemisphäre und das Handeln. MMW Münch Med Wochenschr 49:2375–2378

    Google Scholar 

  • Messier J, Kalaska JF (1999) Comparison of variability of initial kinematics and endpoints of reaching movements. Exp Brain Res 125:139–352

    Article  PubMed  CAS  Google Scholar 

  • Messier J, Kalaska JF (2000) Covariation of primate dorsal premotor cell activity with direction and amplitude during a memorized-delay reaching task. J Neurophysiol 84: 152–165

    PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Polit A, Bizzi E (1978) Processes controlling arm movements in monkeys. Science 201:1235–1237

    Article  PubMed  CAS  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL, Eckhardt (2005) Optimization through lateralization: the evolution of handedness. Behav Brain Sci 28:611–612

    Article  Google Scholar 

  • Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Schaefer SY (2004) Interlimb differences in control of movement extent. J Neurophysiol 92:1374–1383

    Article  PubMed  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145:437–447

    Article  PubMed  Google Scholar 

  • Sainburg RL, Ghez C, Kalakanis D (1999) Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol 81:1040–1056

    Google Scholar 

  • Sainburg RL, Lateiner JE, Latash ML, Bagesteiro LB (2003) Effects of altering initial position on movement direction and extent. J Neurophysiol 89:401–415

    Article  PubMed  Google Scholar 

  • Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA (2000) Persistence of motor adaptation during constrained, multi-joint, arm movements. J Neurophysiol 84:853–862

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Thut G, Cook ND, Regard M, Leenders KL, Halsband U, Landis T (1996) Intermanual transfer of proximal and distal motor engrams in humans. Exp Brain Res 108:321–327

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28: 575–89; discussion 589–633

    Google Scholar 

  • Vindras P, Desmurget M, Prablanc C, Viviani P (1998) Pointing errors reflect biases in the perception of the initial hand position. J Neurophysiol 79:3290–3294

    PubMed  CAS  Google Scholar 

  • Wang J, Sainburg RL (2004) Interlimb transfer of novel inertial dynamics is asymmetrical. J Neurophysiol 92:349–360

    Article  PubMed  Google Scholar 

  • Wang J, Sainburg RL (2005) Adaptation to visuomotor rotations remaps movement vectors, not final positions. J Neurosci 25:4024–4030

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sainburg RL (2006) Interlimb transfer of visuomotor rotations depends on handedness. Exp Brain Res in press

  • Wolpert DM, Kowato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    Google Scholar 

Download references

Acknowledgments

This research was supported by National Institutes of Health grant R01HD39311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsung Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Sainburg, R.L. The dominant and nondominant arms are specialized for stabilizing different features of task performance. Exp Brain Res 178, 565–570 (2007). https://doi.org/10.1007/s00221-007-0936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-0936-x

Keywords

Navigation