Skip to main content
Log in

Endpoint Sobolev Theory for the Muskat Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of solutions with critical regularity for the two-dimensional Muskat equation. We prove that the Cauchy problem is well-posed on the endpoint Sobolev space of \(L^2\) functions with three-half derivative in \(L^2\). This result is optimal with respect to the scaling of the equation. One well-known difficulty is that one cannot define a flow map such that the lifespan is bounded from below on bounded subsets of this critical Sobolev space. To overcome this, we estimate the solutions for a norm which depends on the initial data themselves, using the weighted fractional Laplacians introduced in our previous works. Our proof is the first in which a null-type structure is identified for the Muskat equation, allowing to compensate for the degeneracy of the parabolic behavior for large slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Since it is not immediately obvious that the right-hand side is well defined, we refer to the discussion in paragraph Sect. 4.1 where we recall that the Muskat equation can be written under the form \(\partial _t f+\left| D\right| f={\mathcal {T}}(f)f\) where \({\mathcal {T}}(f)f\) is given by a well-defined integral.

  2. Let us mention that we will make extensive of this symmetry to handle the contributions of terms involving \(\Delta _{-\alpha }\), without explicitly recalling this argument.

References

  1. Abedin, F., Schwab, R. W.: Regularity for a special case of two-phase Hele-Shaw flow via parabolic integro-differential equations. arXiv:2008.01272

  2. Alazard, T., Lazar, O.: Paralinearization of the Muskat equation and application to the Cauchy problem. Arch. Ration. Mech. Anal. 237(2), 545–583 (2020)

    Article  MATH  Google Scholar 

  3. Alazard, T., Nguyen, Q.-H.: On the Cauchy problem for the Muskat equation. II. Critical initial data. Ann. PDE 7, 7 (2021). https://doi.org/10.1007/s40818-021-00099-x

    Article  MATH  Google Scholar 

  4. Alazard, T., Nguyen, Q.-H.: On the Cauchy problem for the Muskat equation with non-lipschitz initial data. Comm. Partial Differ. Equ. (2021). https://doi.org/10.1080/03605302.2021.1928700

    Article  MATH  Google Scholar 

  5. Alazard, T., Lazar, O., Nguyen, Q.-H.: On the dynamics of the roots of polynomials under differentiation. J. de mathematiques pures et appliquées 162, 1–22 (2022). https://doi.org/10.1016/j.matpur.2022.04.001

    Article  MATH  Google Scholar 

  6. Ambrose, D.M.: Well-posedness of two-phase Hele-Shaw flow without surface tension. Eur. J. Appl. Math. 15(5), 597–607 (2004)

    Article  MATH  Google Scholar 

  7. Ambrose, D.M.: Well-posedness of two-phase Darcy flow in 3D. Quart. Appl. Math. 65(1), 189–203 (2007)

    Article  MATH  Google Scholar 

  8. Bourgain, J.: Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Amer. Math. Soc. 12(1), 145–171 (1999)

    Article  MATH  Google Scholar 

  9. Brenier, Y.: On the hydrostatic and Darcy limits of the convective navier-stokes equations. Chin. Ann. Math. Ser. B 30(6), 683 (2009)

    Article  MATH  Google Scholar 

  10. Brué, E., Nguyen, Q.-H.: Advection diffusion equations with Sobolev velocity field. Commun. Math. Phys. 383, 465–487 (2021). https://doi.org/10.1007/s00220-021-03993-4

    Article  ADS  MATH  Google Scholar 

  11. Brué, E., Nguyen, Q.-H.: On the Sobolev space of functions with derivative of logarithmic order. Adv. Nonlinear Anal. 9(1), 836–849 (2020)

    Article  MATH  Google Scholar 

  12. Brué, E., Nguyen, Q.-H.: Sharp regularity estimates for solutions to the continuity equation drifted by Sobolev vector fields. Anal. PDE 14(8), 2539–2559 (2021). https://doi.org/10.2140/apde.2021.14.2539

    Article  MATH  Google Scholar 

  13. Brué, E., Nguyen, Q.-H.: Sobolev estimates for solutions of the transport equation and ode flows associated to non-lipschitz drifts. Mathematische Annalen 380, 855 (2020)

    Article  MATH  Google Scholar 

  14. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MATH  Google Scholar 

  15. Cameron, S.: Global well-posedness for the two-dimensional Muskat problem with slope less than 1. Anal. PDE 12(4), 997–1022 (2019)

    Article  MATH  Google Scholar 

  16. Castro, Á., Córdoba, D., Faraco, D.: Mixing solutions for the Muskat problem. arXiv:1605.04822

  17. Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F.: Breakdown of smoothness for the Muskat problem. Arch. Ration. Mech. Anal. 208(3), 805–909 (2013)

    Article  MATH  Google Scholar 

  18. Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F.: Splash singularities for the one-phase Muskat problem in stable regimes. Arch. Ration. Mech. Anal. 222(1), 213–243 (2016)

    Article  MATH  Google Scholar 

  19. Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F., López-Fernández, M.: Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. (2) 175(2), 909–948 (2012)

    Article  MATH  Google Scholar 

  20. Cazenave, T., Weissler, F. B.: Some remarks on the nonlinear Schrödinger equation in the critical case. In Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), volume 1394 of Lecture Notes in Math., pages 18–29. Springer, Berlin (1989)

  21. Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\). Nonlinear Anal. 14(10), 807–836 (1990)

    Article  MATH  Google Scholar 

  22. Chen, K., Nguyen, Q.-H., Yiran, X.: The Muskat problem with \(C^1\) data. Trans. Amer. Math. Soc. 375, 3039–3060 (2022)

    MATH  Google Scholar 

  23. Chen, K., Nguyen, Q.-H.: The Peskin Problem with \(B^1_{\infty ,\infty }\) initial data, arXiv:2107.13854

  24. Cheng, C.H.A., Granero-Belinchón, R., Shkoller, S.: Well-posedness of the Muskat problem with \(H^2\) initial data. Adv. Math. 286, 32–104 (2016)

    Article  MATH  Google Scholar 

  25. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb{R} }^3\). Ann. Math. (2) 167(3), 767–865 (2008)

    Article  MATH  Google Scholar 

  26. Constantin, P., Córdoba, D., Gancedo, F., Rodríguez-Piazza, L., Strain, R.M.: On the Muskat problem: global in time results in 2D and 3D. Amer. J. Math. 138(6), 1455–1494 (2016)

    Article  MATH  Google Scholar 

  27. Constantin, P., Córdoba, D., Gancedo, F., Strain, R.M.: On the global existence for the Muskat problem. J. Eur. Math. Soc. 15(1), 201–227 (2013)

    Article  MATH  Google Scholar 

  28. Constantin, P., Gancedo, F., Shvydkoy, R., Vicol, V.: Global regularity for 2D Muskat equations with finite slope. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(4), 1041–1074 (2017)

    Article  ADS  MATH  Google Scholar 

  29. Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7(6), 1495–1533 (1994)

    Article  ADS  MATH  Google Scholar 

  30. Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22(5), 1289–1321 (2012)

    Article  MATH  Google Scholar 

  31. Córdoba, A., Córdoba, D., Gancedo, F.: Interface evolution: the Hele-Shaw and Muskat problems. Ann. Math. (2) 173(1), 477–542 (2011)

    Article  MATH  Google Scholar 

  32. Cordoba, D., Faraco, D., Gancedo, F.: Lack of uniqueness for weak solutions of the incompressible porous media equation. Arch. Ration. Mech. Anal. 200(3), 725–746 (2011)

    Article  MATH  Google Scholar 

  33. Córdoba, D., Gancedo, F.: Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Comm. Math. Phys. 273(2), 445–471 (2007)

    Article  ADS  MATH  Google Scholar 

  34. Córdoba, D., Gancedo, F.: A maximum principle for the Muskat problem for fluids with different densities. Comm. Math. Phys. 286(2), 681–696 (2009)

    Article  ADS  MATH  Google Scholar 

  35. Córdoba, D., Lazar, O.: Global well-posedness for the 2d stable Muskat problem in \({H}^{{\frac{3}{2}}}\). arXiv:1803.07528

  36. Deng, F., Lei, Z., Lin, F.: On the two-dimensional Muskat problem with monotone large initial data. Comm. Pure Appl. Math. 70(6), 1115–1145 (2017)

    Article  MATH  Google Scholar 

  37. Förster, C., Székelyhidi, L.: Piecewise constant subsolutions for the Muskat problem. Commun. Math. Phys. 363(3), 1051–1080 (2018)

    Article  ADS  MATH  Google Scholar 

  38. Gancedo, F., Lazar, O.: Global well-posedness for the 3d Muskat problem in the critical Sobolev space. arXiv:2006.01787

  39. Granero-Belinchón, R., Scrobogna, S.: On an asymptotic model for free boundary darcy flow in porous media. arXiv:1810.11798

  40. Grillakis, M.G.: On nonlinear Schrödinger equations. Comm. Partial Differ. Equ. 25(9–10), 1827–1844 (2000)

    Article  MATH  Google Scholar 

  41. Kiselev, A., Nazarov, F.: A variation on a theme of Caffarelli and Vasseur. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370(Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 40):58–72, 220 (2009)

  42. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167(3), 445–453 (2007)

    Article  ADS  MATH  Google Scholar 

  43. Klainerman, S., Rodnianski, I., Szeftel, J.: The bounded \(L^2\) curvature conjecture. Invent. Math. 202(1), 91–216 (2015)

    Article  ADS  MATH  Google Scholar 

  44. Matioc, B.-V.: The Muskat problem in two dimensions: equivalence of formulations, well-posedness, and regularity results. Anal. PDE 12(2), 281–332 (2019)

    Article  MATH  Google Scholar 

  45. Merle, F., Raphäel, P., Rodnianski, I., Szeftel, J.: On blow up for the energy super critical defocusing nonlinear Schrödinger equations. arXiv:1912.11005

  46. Nguyen, H.Q., Pausader, B.: A paradifferential approach for well-posedness of the Muskat problem. Arch. Ration. Mech. Anal. 237(1), 35–100 (2020)

    Article  MATH  Google Scholar 

  47. Nguyen, Q.-H.: Quantitative estimates for regular lagrangian flows with BV vector fields. Comm. Pure Appl. Math. 74, 1129–1192 (2021). https://doi.org/10.1002/cpa.21992

    Article  MATH  Google Scholar 

  48. Nguyen, Q.-H., Sire, Y., Le Xuan, T.: Hölder continuity of solutions for a class of drift-diffusion equations. Discrete Contin. Dynam. Syst. (2022). https://doi.org/10.3934/dcds.2022119

    Article  Google Scholar 

  49. Noisette, F., Székelyhidi Jr. L.: Mixing solutions for the Muskat problem with variable speed. arXiv:2005.08814

  50. Scrobogna, S.: Well-posedness of an asymptotic model for free boundary darcy flow in porous media in the critical Sobolev space. arXiv:2009.14117

  51. Siegel, M., Caflisch, R.E., Howison, S.: Global existence, singular solutions, and ill-posedness for the Muskat problem. Comm. Pure Appl. Math. 57(10), 1374–1411 (2004)

    Article  MATH  Google Scholar 

  52. Silvestre, L.: Hölder estimates for advection fractional-diffusion equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(4), 843–855 (2012)

    MATH  Google Scholar 

  53. Székelyhidi, L., Jr.: Relaxation of the incompressible porous media equation. Ann. Sci. Éc. Norm. Supér. (4) 45(3), 491–509 (2012)

    Article  MATH  Google Scholar 

  54. Tao, T.: Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006). Local and global analysis

  55. Triebel, H.: Theory of function spaces, volume 78 of Monographs in Mathematics. Birkhäuser Verlag, Basel (1983)

  56. Triebel, H.: Characterizations of Besov-Hardy-Sobolev spaces: a unified approach. J. Approx. Theory 52(2), 162–203 (1988)

    Article  MATH  Google Scholar 

  57. Vasilyev, I., Vigneron, F.: Variation on a theme by Kiselev and Nazarov: Hölder estimates for non-local transport-diffusion, along a non-divergence-free BMO field. arXiv:2002.11542

  58. Vázquez, J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. Ser. S 7(4), 857–885 (2014)

    MATH  Google Scholar 

  59. Yi, F.: Global classical solution of Muskat free boundary problem. J. Math. Anal. Appl. 288(2), 442–461 (2003)

    Article  MATH  Google Scholar 

  60. Zygmund, A.: Trigonometric series. Vol. I, II. Cambridge Mathematical Library. Cambridge University Press, Cambridge, third edition, 2002. With a foreword by Robert A. Fefferman

Download references

Acknowledgements

The authors want to thank Benoît Pausader for his stimulating comments as well as for discussions about the critical problem for the Muskat equation. T.A. acknowledges the SingFlows project (Grant ANR-18-CE40-0027) of the French National Research Agency (ANR). Q.H.N. is supported by the Academy of Mathematics and Systems Science, Chinese Academy of Sciences startup fund, and the National Natural Science Foundation of China (No. 12050410257 and No. 12288201) and the National Key R &D Program of China under grant 2021YFA1000800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Alazard.

Additional information

Communicated by A. Ionescu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alazard, T., Nguyen, QH. Endpoint Sobolev Theory for the Muskat Equation. Commun. Math. Phys. 397, 1043–1102 (2023). https://doi.org/10.1007/s00220-022-04514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04514-7

Navigation