Skip to main content
Log in

Contour Dynamics of Incompressible 3-D Fluids in a Porous Medium with Different Densities

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the problem of the evolution of the interface given by two incompressible fluids through a porous medium, which is known as the Muskat problem and in two dimensions it is mathematically analogous to the two-phase Hele–Shaw cell. We focus on a fluid interface given by a jump of densities, being the equation of the evolution obtained using Darcy’s law. We prove local well-posedness when the smaller density is above (stable case) and in the unstable case we show ill-posedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose D. (2004). Well-posedness of Two-phase Hele-Shaw Flow without Surface Tension. Euro. J. Appl. Math. 15: 597–607

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrose D. and Masmoudi N. (2005). The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58: 1287–1315

    Article  MATH  MathSciNet  Google Scholar 

  3. Bear J. (1972). Dynamics of Fluids in Porous Media. American Elsevier, New York

    Google Scholar 

  4. Bertozzi A.L. and Constantin P. (1993). Global regularity for vortex patches. Commun. Math. Phys. 152(1): 19–28

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bertozzi A.L. and Majda A.J. (2002). Vorticity and the Mathematical Theory of Incompresible Fluid Flow. Cambridge Press, Cambridge

    Google Scholar 

  6. Birkhoff, G.: Helmholtz and Taylor instability. In: Hydrodynamics Instability, Proc. Symp. Appl. Math. XII, Providence, RI: Amer. Math. Soc., 55–76, 1962, pp. 55–76

  7. Caflisch R. and Orellana O. (1989). Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal. 20(2): 293–307

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Chemin J.Y. (1993). Persistence of geometric structures in two-dimensional incompressible fluids. Ann. Sci. Ecole. Norm. Sup. 26(4): 517–542

    MATH  MathSciNet  Google Scholar 

  9. Constantin P., Dupont T.F., Goldstein R.E., Kadanoff L.P., Shelley M.J. and Zhou S.M. (1993). Droplet breakup in a model of the Hele-Shaw cell. Physical Review E 47: 4169–4181

    Article  ADS  MathSciNet  Google Scholar 

  10. Constantin P., Majda A.J. and Tabak E. (1994). Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7: 1495–1533

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Escher J. and Simonett G. (1997). Classical solutions for Hele-Shaw models with surface tension. Adv. Differ. Eqs. 2: 619–642

    MATH  MathSciNet  Google Scholar 

  12. Hele-Shaw H.S. (1898). Nature 58: 34

    ADS  Google Scholar 

  13. Hou T.Y., Lowengrub J.S. and Shelley M.J. (1994). Removing the Stiffness from Interfacial Flows with Surface Tension. J. Comput. Phys. 114: 312–338

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Muskat M. (1982). The flow of homogeneous fluids through porous media. Springer, New York

    Google Scholar 

  15. Nirenberg L. (1972). An abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Differ. Geom. 6: 561–576

    MATH  MathSciNet  Google Scholar 

  16. Nishida T. (1977). A note on a theorem of Nirenberg. J. Differ. Geom. 12: 629–633

    MATH  MathSciNet  Google Scholar 

  17. Saffman P.G. and Taylor G. (1958). The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. London, Ser. A 245: 312–329

    MATH  ADS  MathSciNet  Google Scholar 

  18. Siegel M., Caflisch R. and Howison S. (2004). Global Existence, Singular Solutions, and Ill-Posedness for the Muskat Problem. Comm. Pure and Appl. Math. 57: 1374–1411

    Article  MATH  MathSciNet  Google Scholar 

  19. Rodrigo J.L. (2005). On the Evolution of Sharp Fronts for the Quasi-Geostrophic Equation. Comm. Pure and Appl. Math. 58: 0821–0866

    Article  MathSciNet  Google Scholar 

  20. Stein E. and Weiss G. (1971). Introduction to Fourier Analysis on Euclidean spaces. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  21. Stein E. (1993). Harmonic Analysis. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  22. Taylor G. (1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. Roy. Soc. London. Ser. A. 201: 192–196

    Article  MATH  ADS  Google Scholar 

  23. Wu S. (1997). Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130: 39–72

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Wu S. (1999). Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc. 12: 445–495

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Córdoba.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Córdoba, D., Gancedo, F. Contour Dynamics of Incompressible 3-D Fluids in a Porous Medium with Different Densities. Commun. Math. Phys. 273, 445–471 (2007). https://doi.org/10.1007/s00220-007-0246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0246-y

Keywords

Navigation