Skip to main content
Log in

Lack of Uniqueness for Weak Solutions of the Incompressible Porous Media Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this work we consider weak solutions of the incompressible two-dimensional porous media (IPM) equation. By using the approach of De Lellis–Székelyhidi, we prove non-uniqueness for solutions in L in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bear J.: Dynamics of Fluids in Porous Media. American Elsevier, Boston, MA (1972)

    MATH  Google Scholar 

  2. Constantin P., E W., Titi E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Comm. Math. Phys. 165(1), 207–209 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Córdoba D., Gancedo F.: Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Comm. Math. Phys. 273(2), 445–471 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Córdoba D., Gancedo F., Orive R. Analytical behavior of two-dimensional incompressible flow in porous media. J. Math. Phys. 48(6) 065206, 19 (2007)

    Google Scholar 

  5. Dacorogna B., Marcellini P.: General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases. Acta Math. 178, 1–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Lellis C., Székelyhidi L. Jr.: The Euler equation as a differential inclussion. Ann. Math. 170(3), 1417–1436 (2009)

    Article  MATH  Google Scholar 

  7. De Lellis C., Székelyhidi L. Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gancedo F.: Existence for the α-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217(6), 2569–2598 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gromov, M.: Partial differential relations, Vol. 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer, Berlin, 1986

  10. Kirchheim B.: Rigidity and Geometry of microstructures. Habilitation thesis, University of Leipzig, 2003

  11. Kirchheim, B., Müller, S., Šverák, V.: Studying nonlinear PDE by geometry in matrix space. Geometric analysis and Nonlinear partial differential equations, (Eds. Hildebrandt, S. and Karcher, H.) Springer, Berlin, 347–395, 2003

  12. Kirchheim, B., Preiss, D.: Construction of Lipschitz mappings having finitely many gradients without rank-one connections, in preparation

  13. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow, Vol. 27 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002

  14. Müller S., Šverák V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. (2) 157(3), 715–742 (2003)

    Article  MATH  Google Scholar 

  15. Müller S., Sychev M.A.: Optimal existence theorems for nonhomogeneous differential inclusions. J. Funct. Anal. 181, 447–475 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9) 6, Supplemento, 2(Convegno Internazionale di Meccanica Statistica), 279–287 (1949)

  17. Oxtoby, J.C.: Measure and category, second ed., Vol. 2 of Graduate Texts in Mathematics. Springer, New York, 1980

  18. Pedregal P.: Laminates and microstructure. Eur. J. Appl. Math. 4, 121–149 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pedregal, P.: Parametrized measures and variational principles, Vol. 30 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser, Basel, 1997

  20. Resnick, S.: Dynamical problems in nonlinear advective partial differential equations. Dissertation, University of Chicago, 1995

  21. Rodrigo J.L.: On the evolution of sharp fronts for the quasi-geostrophic equation. Comm. Pure Appl. Math. 58(6), 821–866 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Scheffer V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shnirelman A.: On the nonuniqueness of weak solution of the Euler equation. Comm. Pure Appl. Math. 50(12), 1261–1286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Székelyhidi L. Jr.: The regularity of critical points of polyconvex functionals. Arch. Ration. Mech. Anal. 172(1), 133–152 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV. Vol. 39 of Res. Notes in Math. Pitman, Boston, 136–212, 1979

  26. Tartar, L.: The compensated compactness method applied to systems of conservation laws. Systems of Nonlinear Partial Differential Equations (Oxford, 1982). Vol. 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. Reidel, Dordrecht, 263–285, 1983

  27. Wu J.: The quasi-geostrophic equation and its two regularizations. Commun. Partial Differ. Equ. 27(5–6), 1161–1181 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Cordoba.

Additional information

Communicated by W. E

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordoba, D., Faraco, D. & Gancedo, F. Lack of Uniqueness for Weak Solutions of the Incompressible Porous Media Equation. Arch Rational Mech Anal 200, 725–746 (2011). https://doi.org/10.1007/s00205-010-0365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0365-z

Keywords

Navigation