Skip to main content
Log in

Low Energy Limit for the Resolvent of Some Fibered Boundary Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For certain Dirac operators \(\eth _{\phi }\) associated to a fibered boundary metric \(g_{\phi }\), we provide a pseudodifferential characterization of the limiting behavior of \((\eth _{\phi }+k\gamma )^{-1}\) as \(k\searrow 0\), where \(\gamma \) is a self-adjoint operator anti-commuting with \(\eth _{\phi }\) and whose square is the identity. This yields in particular a pseudodifferential characterization of the low energy limit of the resolvent of \(\eth _{\phi }^2\), generalizing a result of Guillarmou and Sher about the low energy limit of the resolvent of the Hodge Laplacian of an asymptotically conical metric. As an application, we use our result to give a pseudodifferential characterization of the inverse of some suspended version of the operator \(\eth _{\phi }\). One important ingredient in the proof of our main theorem is that the Dirac operator \(\eth _{\phi }\) is Fredholm when acting on suitable weighted Sobolev spaces. This result has been known to experts for some time and we take this as an occasion to provide a complete explicit proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albin, P., Rochon, F., Sher, D.: A Cheeger–Müller theorem for manifolds with wedge singularities. arXiv:1807.02178, to appear in Analysis & PDE

  2. Albin, P., Rochon, F., Sher, D.: Resolvent, Heat Kernel, and Torsion Under Degeneration to Fibered Cusps. Memoirs of the American Mathematical Society, vol. 269. American Mathematical Society, Providence (2021)

    MATH  Google Scholar 

  3. Ammann, B., Lauter, R., Nistor, V.: On the geometry of Riemannian manifolds with a Lie structure at infinity. Int. J. Math. 2004, 161–193 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin (2004)

    MATH  Google Scholar 

  5. Brandhuber, A., Gomis, J., Gubser, S.S., Gukov, S.: Gauge theory and large \(N\) and new \(G_2\) holonomy metrics. Nucl. Phys. B 611, 179–204 (2001)

    ADS  MATH  Google Scholar 

  6. Carron, G.: On the quasi-asymptotically locally Euclidean geometry of Nakajima’s metric. J. Inst. Math. Jussieu 10(1), 119–147 (2011)

  7. Chou, A.W.: The Dirac operator on spaces with conical singularities and positive scalar curvatures. Trans. Am. Math. Soc. 289(1), 1–40 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conlon, R.J., Hein, H.-J.: Asymptotically conical Calabi–Yau manifolds, I. Duke Math. J. 162(15), 2855–2902 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Conlon, R.J., Hein, H.-J.: Asymptotically conical Calabi–Yau metrics on quasi-projective varieties. Geom. Funct. Anal. 25(2), 517–552 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conlon, R., Degeratu, A., Rochon, F.: Quasi-asymptotically conical Calabi–Yau manifolds. Geom. Topol. 23(1), 29–100 (2019). (With an appendix by Conlon, Rochon and Lars Sektnan)

    Article  MathSciNet  MATH  Google Scholar 

  11. Debord, C., Lescure, J.-M., Rochon, F.: Pseudodifferential operators on manifolds with fibred corners. Ann. Inst. Fourier 65(4), 1799–1880 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Degeratu, A., Mazzeo, R.: Fredholm theory for elliptic operators on quasi-asymptotically conical spaces. Proc. Lond. Math. Soc. (3) 116(5), 1112–1160 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Epstein, C.L., Melrose, R.B., Mendoza, G.A.: Resolvent of the Laplacian on strictly pseudoconvex domains. Acta Math. 167(1–2), 1–106 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Foscolo, L., Haskins, M., Nordström, J.: Complete noncompact G2-manifolds from asymptotically conical Calabi–Yau 3-folds. Duke Math. J. 170(15), 3323–3416 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Foscolo, L., Haskins, M., Nordström, J.: Infinitely many new families of complete cohomogeneity one \({{\rm G}}_2\)-manifolds: \({{\rm G}}_2\) analogues of the Taub-NUT and Eguchi–Hanson spaces. J. Eur. Math. Soc. 23(7), 2153–2220 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Fritzsch, K., Kottke, C., Singer, M.: Monopoles and the Sen conjecture. arXiv:1811.00601 (2018)

  17. Goto, R.: Calabi–Yau structures and Einstein–Sasakian structures on crepant resolutions of isolated singularities. J. Math. Soc. Jpn. 64(3), 1005–1052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grieser, D.: Scales, blow-up and quasi-mode construction. Contemp. Math. AMS 700, 207–266 (2017). (in geometric and computational spectral theory)

    Article  MATH  Google Scholar 

  19. Grieser, D., Hunsicker, E.: A Parametrix Construction for the Laplacian on \({{\mathbb{Q}}}\)-Rank 1 Locally Symmetric Spaces. Fourier Analysis, Trends in Mathematics. Birkhäuser, Cham (2014)

    MATH  Google Scholar 

  20. Grieser, D., Talebi, M.P., Vertman, B.: Spectral geometry on manifolds with fibred boundary metrics I: low energy resolvent, arXiv (2020)

  21. Guillarmou, C., Hassell, A.: The resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds, part I. Math. Ann. 341(4), 859–896 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guillarmou, C., Hassell, A.: The resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds, part II. Ann. Inst. Fourier 59(2), 1553–1610 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guillarmou, C., Sher, D.: Low energy resolvent for the Hodge Laplacian: applications to Riesz transform, Sobolev estimates and analytic torsion. Int. Math. Res. Not. 15, 6136–6210 (2014)

    MATH  Google Scholar 

  24. Hassell, A., Mazzeo, R., Melrose, R.B.: Analytic surgery and the accumulation of eigenvalues. Commun. Anal. Geom. 3(1–2), 115–222 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hausel, T., Hunsicker, E., Mazzeo, R.: Hodge cohomology of gravitational instantons. Duke Math. J. 122(3), 485–548 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. 3. Springer, Berlin (1985)

    MATH  Google Scholar 

  27. Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

    Google Scholar 

  28. Kottke, C., Rochon, F.: \(L^2\)-cohomology of quasi-fibered boundary metrics. arXiv:2103.16655

  29. Kottke, C., Rochon, F.: Quasi-fibered boundary pseudodifferential operators. arXiv:2103.16650

  30. Kottke, C.: A Callias-type index theorem with degenerate potentials. Commun. Partial Differ. Equ. 40(2), 219–264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kronheimer, P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29(3), 665–683 (1989)

    MathSciNet  MATH  Google Scholar 

  32. Mazzeo, R.: Elliptic theory of differential edge operators. I. Commun. Partial Differ. Equ. 16(10), 1615–1664 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mazzeo, R., Melrose, R.B.: Pseudodifferential operators on manifolds with fibred boundaries. Asian J. Math. 2(4), 833–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mazzeo, R., Melrose, R.B.: Meromorphic extension of the resolvent on complete spaces with with asymptotically negative curvature. J. Funct. Anal. 75, 260–310 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Melrose, R.B.: Differential analysis on manifolds with corners. http://www-math.mit.edu/~rbm/book.html. Accessed 1996

  36. Melrose, R.B.: Calculus of conormal distributions on manifolds with corners. Int. Math. Res. Not. 3, 51–61 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Melrose, R.B.: The Atiyah–Patodi–Singer Index Theorem. A. K. Peters, Wellesley (1993)

    Book  MATH  Google Scholar 

  38. Melrose, R.B.: Geometric Scattering Theory. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  39. Melrose, R.B., Rochon, F.: Periodicity and the determinant bundle. Commun. Math. Phys. 274(1), 141–186 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Sen, A.: Dyon-monopole bound states, self-dual harmonic forms on the multi-monopole moduli space, and \(\text{ SL }(2,{\mathbb{Z}})\) invariance in string theory. Phys. Lett. B 329, 217–221 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Sher, D.: The heat kernel on an asymptotically conic manifold. Anal. PDE 6(7), 1755–1791 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sher, D.: Conic degeneration and the determinant of the Laplacian. J. Anal. Math. 126(1), 175–226 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tian, G., Yau, S.-T.: Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. In: Proceedings of Conference in San Diego Advances in Mathematical Physics, vol. 1, pp. 574–629 (1987)

  44. Vafa, C., Witten, E.: A strong coupling test of S-duality. Nucl. Phys. B 431, 3–77 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Vaillant, B.: Index and spectral theory for manifolds with generalized fibred cusp, Ph.D. dissertation, Bonner Mathematische Schriften, 344, Universität Bonn Mathematisches Institut, Bonn. arXiv:math.DG/0102072 (2001)

  46. van Coevering, C.: Ricci-flat Kähler metrics on crepant resolutions of Kähler cones. Math. Ann. 347(3), 581–611 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wunsh, J., Zworski, M.: Distribution of resonance for asymptotically Euclidean manifolds. J. Differ. Geom. 55(1), 43–82 (2000)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Rafe Mazzeo for helpful conversations and two referees for detailed reports and valuable comments and suggestions. CK was supported by NSF Grant No. DMS-1811995. In addition, this material is based in part on work supported by the NSF under Grant No. DMS-1440140 while CK was in residence at the Mathematical Sciences Research Institute (MSRI) in Berkeley, California, during the Fall 2019 semester. FR was supported by NSERC and a Canada Research chair. This project was initiated in the Fall 2019 during the program Microlocal Analysis at the MSRI. The authors would like to thank the MSRI for its hospitality and for creating a stimulating environment for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Rochon.

Additional information

Communicated by S. Dyatlov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Blow-ups in Manifolds with Corners

Appendix A. Blow-ups in Manifolds with Corners

In this appendix, we will establish the commutativity of blow-ups of two p-submanifolds used in Lemma 4.4 to show that our two ways of constructing the \(k,\phi \)-double space are equivalent. Indeed, this result definitely requires a proof, especially since it does not seem to follow from standard results like the commutativity of nested blow-ups or the commutativity of blow-ups of transversal p-submanifolds.

Lemma A.1

Let W be a manifold with corners. Suppose that X and Y are two p-submanifolds such that their intersection \(Z= X\cap Y\) is also a p-submanifold with the property that for every \(w\in Z\), there is a coordinate chart

$$\begin{aligned} \varphi : {\mathcal {U}}\rightarrow {\mathbb {R}}^{n_1}_{k_1}\times {\mathbb {R}}^{n_2}_{k_2}\times {\mathbb {R}}^{n_3}_{k_3}\times {\mathbb {R}}^{n_4}_{k_4} \end{aligned}$$
(A.1)

sending w to the origin such that

$$\begin{aligned} \begin{aligned} \varphi ({\mathcal {U}}\cap X)&= \{0\}\times \{0\}\times {\mathbb {R}}^{n_3}_{k_3}\times {\mathbb {R}}^{n_4}_{k_4}, \\ \varphi ({\mathcal {U}}\cap Y)&= \{0\}\times {\mathbb {R}}^{n_2}_{k_2}\times \{0\}\times {\mathbb {R}}^{n_4}_{k_4}, \\ \varphi ({\mathcal {U}}\cap Z)&= \{0\}\times \{0\}\times \{0\}\times {\mathbb {R}}^{n_4}_{k_4}. \end{aligned} \end{aligned}$$
(A.2)

Then the identity map in the interior extends to a diffeomorphism

$$\begin{aligned} {[}W;X,Y,Z]\rightarrow [W;Y,X,Z]. \end{aligned}$$
(A.3)

Proof

Since we blow up Z last, notice first that this result does not quite follows from the commutativity of nested blow-ups. Now, clearly, away from Z, the blow-ups of X and Y commute since they do not intersect. Thus, to establish (A.3), it suffices to establish it near Z. Let \(w\in Z\) be given and consider a coordinate chart \(({\mathcal {U}},\varphi )\) as in (A.2). Let \(x=(x_1,\ldots , x_{n_1})\), \(y=(y_1,\ldots ,y_{n_2})\), \(z=(z_1,\ldots ,z_{n_3})\) and \(w=(w_1,\ldots ,w_{n_4})\) be the canonical coordinates for the factors \({\mathbb {R}}^{n_1}_{k_1}\), \({\mathbb {R}}^{n_2}_{k_2}\), \({\mathbb {R}}^{n_3}_{k_3}\) and \({\mathbb {R}}^{n_4}_{k_4}\) respectively.

When we blow up X, this coordinate chart is replaced by the one induced by the coordinates

$$\begin{aligned} (\omega _{x,y}=(\frac{x}{r},\frac{y}{r}), r=\sqrt{|x|^2+|y^2|},z,w)\in {\mathbb {S}}^{n_1+n_2-1}_{k_1+k_2}\times [0,\infty )_r\times {\mathbb {R}}^{n_3}_{k_3}\times {\mathbb {R}}^{n_4}_{k_4}. \end{aligned}$$

In this coordinate chart, the lifts of Y and Z corresponds to

$$\begin{aligned} (\{0\}\times {\mathbb {S}}^{n_2-1}_{k_2})\times [0,\infty )_r\times \{0\}\times {\mathbb {R}}^{n_4}_{k_4} \end{aligned}$$

and

$$\begin{aligned} {\mathbb {S}}^{n_1+n_2-1}_{k_1+k_2}\times \{0\}\times \{0\} \times {\mathbb {R}}^{n_4}_{k_4}, \end{aligned}$$

where \(\{0\}\times {\mathbb {S}}^{n_2-1}_{k_2}\subset {\mathbb {R}}^{n_1}_{k_1}\times {\mathbb {R}}^{n_2}_{k_2}\) is seen as a p-submanifold of \({\mathbb {S}}^{n_1+n_2-1}_{k_1+k_2}\) seen as the unit sphere in \({\mathbb {R}}^{n_1}_{k_1}\times {\mathbb {R}}^{n_2}_{k_2}\). To blow up Y, this suggests to consider the smaller coordinate chart induced by the coordinates

$$\begin{aligned} (x,\omega _y=\frac{y}{|y|},r,z,w)\in {\mathbb {R}}^{n_1}_{k_1}\times {\mathbb {S}}^{n_2-1}_{k_2}\times [0,\infty )_{r}\times {\mathbb {R}}^{n_3}_{k_3}\times {\mathbb {R}}^{n_4}_{k_4} \end{aligned}$$

in which the lift of Y corresponds to

$$\begin{aligned} \{0\}\times {\mathbb {S}}^{n_2-1}_{k_2}\times [0,\infty )_r\times \{0\}\times {\mathbb {R}}^{n_4}_{k_4} \end{aligned}$$

and the lift of Z to

$$\begin{aligned} {\mathbb {R}}^{n_1}_{k_1}\times {\mathbb {S}}^{n_2-1}_{k_2}\times \{0\}\times \{0\}\times {\mathbb {R}}^{n_4}_{k_4}. \end{aligned}$$

Hence, blowing up Y, we obtain a coordinate chart on [WXY] by considering the one induced by the coordinates

$$\begin{aligned}&(\omega _{x,z}=(\frac{x}{\rho },\frac{z}{\rho }), \rho =\sqrt{|x|^2+|z|^2}, \omega _y=\frac{y}{|y|},r=\sqrt{|x|^2+|y|^2},w)\in {\mathbb {S}}^{n_1+n_3-1}_{k_1+k_3}\\&\quad \times [0,\infty )_{\rho } \times {\mathbb {S}}^{n_2-1}_{k_2}\times [0,\infty )_r\times {\mathbb {R}}^{n_4}_{k_4} \end{aligned}$$

in which the lift of Z corresponds to

$$\begin{aligned} ({\mathbb {S}}^{n_1-1}_{k_1}\times \{0\})\times [0,\infty )_{\rho }\times {\mathbb {S}}^{n_2-1}_{k_2}\times \{0\}\times {\mathbb {R}}^{n_4}_{k_4} \end{aligned}$$

with \({\mathbb {S}}^{n_1-1}_{k_1}\times \{0\}\subset {\mathbb {R}}^{n_1}_{k_1}\times {\mathbb {R}}^{n_3}_{k_3}\) seen as a p-submanifold of \({\mathbb {S}}^{n_1+n_3-1}_{k_1+k_3}\). To blow up Z, this suggests to consider the coordinate charts induced by the coordinates

$$\begin{aligned}&(z,\omega _x=\frac{x}{|x|}, \rho =\sqrt{|x|^2+|z|^2}, \omega _y=\frac{y}{|y|}, r=\sqrt{|x|^2+|y|^2},w)\in {\mathbb {R}}^{n_3}_{k_{3}}\times {\mathbb {S}}^{n_1-1}_{k_1}\\&\quad \times [0,\infty )_{\rho }\times {\mathbb {S}}^{n_2-1}_{k_2}\times [0,\infty )_{r}\times {\mathbb {R}}^{n_4}_{k_4} \end{aligned}$$

in which the lift of Z corresponds to

$$\begin{aligned} \{0\}\times {\mathbb {S}}^{n_1-1}_{k_1}\times [0,\infty )_{\rho }\times {\mathbb {S}}^{n_2-1}_{k_2}\times \{0\}\times {\mathbb {R}}^{n_4}_{k_4}. \end{aligned}$$

Hence, blowing up the lift of Z, we see that [WXYZ] admits a coordinate chart induced by the coordinates

$$\begin{aligned}&(\omega _{z,r}=(\frac{z}{s},\frac{r}{s}), s= \sqrt{|z|^2+r^2}, \omega _x= \frac{x}{|x|}, \omega _y=\frac{y}{|y|}, \rho =\sqrt{|x|^2+ |y|^2},w) \nonumber \\&\quad \in {\mathbb {S}}^{n_3}_{k_3+1}\times [0,\infty )_{s}\times {\mathbb {S}}^{n_1-1}_{k_1}\times {\mathbb {S}}^{n_2-1}_{k_2}\times [0,\infty )_{\rho }\times {\mathbb {R}}^{n_4}_{k_4}. \end{aligned}$$
(A.4)

In this chart, Z lifts to

$$\begin{aligned} {\mathbb {S}}^{n_3}_{k_3+1}\times \{0\}\times {\mathbb {S}}^{n_1-1}_{k_1}\times {\mathbb {S}}^{n_2-1}_{k_2}\times [0,\infty )_{\rho }\times {\mathbb {R}}^{n_4}_{k_4}, \end{aligned}$$

Y lifts to

$$\begin{aligned} {\mathbb {S}}^{n_3}_{k_3+1}\times [0,\infty )_s\times {\mathbb {S}}^{n_1-1}_{k_1}\times {\mathbb {S}}^{n_2-1}_{k_2}\times \{0\}\times {\mathbb {R}}^{n_4}_{k_4} \end{aligned}$$

and X lifts to

$$\begin{aligned} ({\mathbb {S}}^{n_3-1}_{k_3}\times \{0\})\times [0,\infty )_s\times {\mathbb {S}}^{n_1-1}_{k_1}\times {\mathbb {S}}^{n_2-1}_{k_2}\times [0,\infty )_{\rho }\times {\mathbb {R}}^{n_4}_{k_4}, \end{aligned}$$

where \({\mathbb {S}}^{n_3-1}_{k_3}\times \{0\}\subset {\mathbb {R}}^{n_3}_{k_3}\times [0,\infty )_r\) is seen as a p-submanifold of the unit sphere \({\mathbb {S}}^{n_3}_{k_3+1}\subset {\mathbb {R}}^{n_3}_{k_3}\times [0,\infty )_{r}\).

Since we are interested in the commutativity of the blow-ups of X and Y when the blow-up of Z is subsequently performed, we can consider instead a smaller coordinate chart on [WXYZ] in a neighborhood of the lift of X which is induced by the coordinates

$$\begin{aligned}&(\omega _x=\frac{x}{|x|}, \omega _y=\frac{y}{|y|}, \omega _z=\frac{z}{|z|}, r=\sqrt{|x|^2+|y|^2},\nonumber \\&\rho =\sqrt{|x|^2+|z|^2},s=\sqrt{|x|^2+|y|^2+|z|^2},w) \nonumber \\&\quad \in {\mathbb {S}}^{n_1-1}_{k_1}\times {\mathbb {S}}^{n_2-1}_{k_2}\times {\mathbb {S}}^{n_3-1}_{k_3}\times [0,\infty )_{r}\times [0,\infty )_{\rho }\times [0,\infty )_{s}\times {\mathbb {R}}^{n_4}_{k_4}. \end{aligned}$$
(A.5)

This chart is defined near the intersection of the lifts of X, Y and Z, which corresponds to \({\mathbb {S}}^{n_1-1}_{k_1}\times {\mathbb {S}}^{n_2-1}_{k_2}\times {\mathbb {S}}^{n_3-1}_{k_3}\times \{0\}\times \{0\}\times \{0\}\times {\mathbb {R}}^{n_4}_{k_4}\).

The definition of this system of coordinates is symmetric with respect to X and Y, namely, considering instead [WYXZ], we would have obtain the same coordinate system valid near the intersection of the lifts of XY and Z. This indicates that in this region, the identity map in the interior naturally extends to a diffeomorphism. Since this clear elsewhere, the result follows. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kottke, C., Rochon, F. Low Energy Limit for the Resolvent of Some Fibered Boundary Operators. Commun. Math. Phys. 390, 231–307 (2022). https://doi.org/10.1007/s00220-021-04273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04273-x

Navigation