Skip to main content
Log in

Absence of Eigenvalues of Analytic Quasi-Periodic Schrödinger Operators on \({\mathbb {R}}^d\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the Schrödinger operator \(H=-\Delta + \lambda V(\varvec{x})\) with a real analytic quasi-periodic potential \(V(\varvec{x})\) defined on \({\mathbb {R}}^d\) for arbitrary \(d\ge 1\). We prove that H has no eigenvalues in the energy interval \(\left[ -|\log \lambda |^{C}, |\log \lambda |^{C}\right] \) for every \(C>0\) if \(\lambda >0\) is sufficiently small. The proof is based on the Aubry duality and the multi-scale analysis in the momentum space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The usage of the notation is inspired by [KPS20].

  2. This assumption is essentially satisfied in [BGS02, Bou07, JLS20].

References

  1. Agmon, S.: Lower bounds for solutions of Schrödinger equations. J. Anal. Math. 23, 1–25 (1970)

    Article  Google Scholar 

  2. Bourgain, J., Goldstein, M.: On nonperturbative localization with quasi-periodic potential. Ann. Math. (2) 152(3), 835–879 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J., Goldstein, M., Schlag, W.: Anderson localization for Schrödinger operators on \(\varvec {Z}^{ 2}\) with quasi-periodic potential. Acta Math. 188(1), 41–86 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J., Jitomirskaya, S.: Absolutely continuous spectrum for 1D quasiperiodic operators. Invent. Math. 148(3), 453–463 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bjerklöv, K.: Positive Lyapunov exponents for continuous quasiperiodic Schrödinger equations. J. Math. Phys. 47(2), 022702 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bourgain, J., Kachkovskiy, I.: Anderson localization for two interacting quasiperiodic particles. Geom. Funct. Anal. 29(1), 3–43 (2019)

    Article  MathSciNet  Google Scholar 

  7. Binder, I., Kinzebulatov, D., Voda, M.: Non-perturbative localization with quasiperiodic potential in continuous time. Commun. Math. Phys. 351(3), 1149–1175 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications. In: Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton, NJ (2005)

  9. Bourgain, J.: Anderson localization for quasi-periodic lattice Schrödinger operators on \(\mathbb{Z}^d\), \(d\) arbitrary. Geom. Funct. Anal. 17(3), 682–706 (2007)

    Article  MathSciNet  Google Scholar 

  10. Damanik, D.: Schrödinger operators with dynamically defined potentials. Ergod. Theory Dyn. Syst. 37(6), 1681–1764 (2017)

    Article  Google Scholar 

  11. Damanik, D., Fillman, J., Gorodetski, A.: Multidimensional almost-periodic Schrödinger operators with Cantor spectrum. Ann. Henri Poincaré 20(4), 1393–1402 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. Damanik, D., Goldstein, M.: On the inverse spectral problem for the quasi-periodic Schrödinger equation. Publ. Math. Inst. Hautes Études Sci. 119, 217–401 (2014)

    Article  MathSciNet  Google Scholar 

  13. Dinaburg, E.I., Sinai, Y.: The one-dimensional Schrödinger equation with quasiperiodic potential. Funct. Anal. Appl. 9, 279–289 (1975)

    Article  Google Scholar 

  14. Eliasson, L.H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146(3), 447–482 (1992)

    Article  ADS  Google Scholar 

  15. Froese, R., Herbst, I.: Exponential bounds and absence of positive eigenvalues for \(N\)-body Schrödinger operators. Commun. Math. Phys. 87(3), 429–447 (1982)

    Article  ADS  Google Scholar 

  16. Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88(2), 151–184 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  17. Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132(1), 5–25 (1990)

    Article  ADS  Google Scholar 

  18. Goldstein, M., Schlag, W.: Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues. Geom. Funct. Anal. 18(3), 755–869 (2008)

    Article  MathSciNet  Google Scholar 

  19. Ionescu, A.D., Jerison, D.: On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal. 13(5), 1029–1081 (2003)

    Article  MathSciNet  Google Scholar 

  20. Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. (2) 121(3), 463–494 (1985). With an appendix by E. M. Stein

    Article  MathSciNet  Google Scholar 

  21. Jitomirskaya, S., Kachkovskiy, I.: \(L^2\)-reducibility and localization for quasiperiodic operators. Math. Res. Lett. 23(2), 431–444 (2016)

    Article  MathSciNet  Google Scholar 

  22. Jitomirskaya, S., Liu, W., Shi, Y.: Anderson localization for multi-frequency quasi-periodic operators on \(\mathbb{Z}^d\). Geom. Funct. Anal. 30(2), 457–481 (2020)

    Article  MathSciNet  Google Scholar 

  23. Kato, T.: Growth properties of solutions of the reduced wave equation with a variable coefficient. Commun. Pure Appl. Math. 12, 403–425 (1959)

    Article  MathSciNet  Google Scholar 

  24. Karpeshina, Y., Lee, Y.-R., Shterenberg, R., Stolz, G.: Ballistic transport for the Schrödinger operator with limit-periodic or quasi-periodic potential in dimension two. Commun. Math. Phys. 354(1), 85–113 (2017)

    Article  ADS  Google Scholar 

  25. Karpeshina, Y., Parnovski, L., Shterenberg, R.: Bethe-Sommerfeld conjecture and absolutely continuous spectrum of multi-dimensional quasi-periodic Schrödinger operators. arXiv:2010.05881 (2020)

  26. Karpeshina, Y., Shterenberg, R.: Multiscale analysis in momentum space for quasi-periodic potential in dimension two. J. Math. Phys. 54(7), 073507 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Karpeshina, Y., Shterenberg, R.: Extended states for the Schrödinger operator with quasi-periodic potential in dimension two. Mem. Am. Math. Soc. 258(1239), 139 (2019)

    MATH  Google Scholar 

  28. Liu, W.: Continuous quasiperiodic Schrödinger operators with Gordon type potentials. J. Math. Phys. 59(6), 063501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Liu, W.: Quantitative inductive estimates for Green’s functions of non-self-adjoint matrices. Anal. PDE (to appear), arXiv:2007.00578 (2020)

  30. Martin, A.: A new class of Schrödinger operators without positive eigenvalues. Integral Equ. Oper. Theory 91(3), 1–34 (2019)

    Article  Google Scholar 

  31. Marx, C.A., Jitomirskaya, S.: Dynamics and spectral theory of quasi-periodic Schrödinger-type operators. Ergod. Theory Dyn. Syst. 37(8), 2353–2393 (2017)

    Article  Google Scholar 

  32. Moser, J., Pöschel, J.: An extension of a result by Dinaburg and Sinai on quasiperiodic potentials. Comment. Math. Helv. 59(1), 39–85 (1984)

    Article  MathSciNet  Google Scholar 

  33. Parnovski, L.: Bethe–Sommerfeld conjecture. Ann. Henri Poincaré 9(3), 457–508 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. Parnovski, L., Sobolev, A.: Bethe–Sommerfeld conjecture for periodic operators with strong perturbations. Invent. Math. 181(3), 467–540 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  35. Parnovski, L., Shterenberg, R.: Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic Schrödinger operators. Ann. Math. (2) 176(2), 1039–1096 (2012)

    Article  MathSciNet  Google Scholar 

  36. Parnovski, L., Shterenberg, R.: Complete asymptotic expansion of the spectral function of multidimensional almost-periodic Schrödinger operators. Duke Math. J. 165(3), 509–561 (2016)

    Article  MathSciNet  Google Scholar 

  37. Rüssmann, H.: On the one-dimensional Schrödinger equation with a quasiperiodic potential. Ann. N. Y. Acad. Sci. 357, 90–107 (1980)

    Article  ADS  Google Scholar 

  38. Shi, Y.: Analytic solutions of nonlinear elliptic equations on rectangular tori. J. Differ. Equ. 267(9), 5576–5600 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. Shi, Y.: Spectral theory of multi-frequency quasi-periodic operator with a Gevrey type perturbation. J. Anal. Math. (to appear), arXiv:1909.08772 (2019)

  40. Simon, B.: On positive eigenvalues of one-body Schrödinger operators. Commun. Pure Appl. Math. 22, 531–538 (1969)

    Article  Google Scholar 

  41. Sorets, E., Spencer, T.: Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials. Commun. Math. Phys. 142(3), 543–566 (1991)

    Article  ADS  Google Scholar 

  42. Surace, S.: The Schrödinger equation with a quasi-periodic potential. Trans. Am. Math. Soc. 320(1), 321–370 (1990)

    MathSciNet  MATH  Google Scholar 

  43. You, J., Zhou, Q.: Phase transition and semi-global reducibility. Commun. Math. Phys. 330(3), 1095–1113 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is deeply grateful to the editor and the anonymous referees for their helpful suggestions that has led to an important improvement of the paper. This work was supported by NNSF of China Grant 11901010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Shi.

Additional information

Communicated by J. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Lemma A.1

Let \(H=-\Delta +V(\varvec{x})\) be a Schrödinger operator with \(M=\sup _{\varvec{x}\in {\mathbb {R}}^d}|V(\varvec{x})|<\infty \). Then for any \(E\ge 0\), we have

$$\begin{aligned} \sigma (H)\cap [E-M,E+M]\ne \emptyset , \end{aligned}$$

where \(\sigma (H)\) denotes the spectrum of H.

Proof

Let \({\mathbb {E}}(\cdot )\) be the (projection-valued) spectral measure of \(H=-\Delta +V(\varvec{x})\). Then the Spectral Theorem reads as

$$\begin{aligned} H=\int _{\sigma (H)}\lambda \mathrm{d}{\mathbb {E}}(\lambda ). \end{aligned}$$

Note that \(\sigma (-\Delta )=\sigma _{ess}(-\Delta )=[0,\infty )\). From the Weyl criterion, for each \(E\ge 0\), there is a sequence \(\{F_n(\varvec{x})\}_{n\in {\mathbb {N}}}\subset H^2({\mathbb {R}}^d)\) such that

$$\begin{aligned}&(-\Delta -E)F_n\rightarrow 0\ \mathrm{as}\ n\rightarrow \infty ,\\&\Vert F_n\Vert _{L^2}=1\ \mathrm{for}\ \forall \ n. \end{aligned}$$

For each \(n\in {\mathbb {N}}\), we know \(\mu _n(\cdot )=\langle {\mathbb {E}}(\cdot )F_n,F_n\rangle \) is a positive Borel measure and \(\mu _n(\sigma (H))=\Vert F_n\Vert _{L^2}^2=1\), where \(\langle F,G\rangle =\int _{{\mathbb {R}}^d}F(\varvec{x})\overline{G}(\varvec{x})\mathrm{d} \varvec{x}\). Obviously, \(\Vert VF_n\Vert _{L^2}\le M\). Hence

$$\begin{aligned} \inf _{\lambda \in \sigma (H)}|\lambda -E|^2\Vert F_n\Vert ^2_{L^2}&\le \int _{\sigma (H)}|\lambda -E|^2\mathrm{d}\mu _n(\lambda )\nonumber \\&=\Vert (-\Delta +V(\varvec{x})-E)F_n\Vert _{L^2}^2\nonumber \\&\le (\Vert (-\Delta -E)F_n\Vert _{L^2}+M)^2. \end{aligned}$$
(A.1)

Letting \(n\rightarrow \infty \) in (A.1), we get

$$\begin{aligned} \mathrm{dist}(E, \sigma (H))\le M, \end{aligned}$$
(A.2)

which shows \([E-M,E+M]\cap \sigma (H)\ne \emptyset \). Otherwise, there must be \(\mathrm{dist}(E, \sigma (H))\ge {2}M\), which contradicts (A.2). \(\square \)

Appendix B

We write \(G_{(\cdot )}=G_{(\cdot )}(E;\varvec{\Theta })\) for simplicity.

We have the following lemmas.

Lemma B.1

(Lemma A.1, [Shi19a]). Fix \({\bar{\rho }}>0\). Let \(\Lambda \subset {\mathbb {Z}}^{b}\) satisfy \(\Lambda \in {\mathcal {E}}_N\) and let AB be two linear operators on \({\mathbb {C}}^\Lambda \). We assume further

$$\begin{aligned} \Vert A^{-1}\Vert&\le e^{\sqrt{N}},\\ |A^{-1}({\varvec{n}},{\varvec{n}}')|&\le e^{-{\bar{\rho }}|{\varvec{n}}-{\varvec{n}}'|}\ \mathrm {for}\ |{\varvec{n}}-{\varvec{n}}'|\ge N/10. \end{aligned}$$

Suppose that for all \({\varvec{n}},{\varvec{n}}'\in \Lambda \),

$$\begin{aligned} |(B-A)({\varvec{n}},{\varvec{n}}')|\le e^{-3{\bar{\rho }} N-{\bar{\rho }}|{\varvec{n}}-{\varvec{n}}'|}. \end{aligned}$$

Then

$$\begin{aligned} \Vert B^{-1}\Vert&\le 2\Vert A^{-1}\Vert ,\\ |B^{-1}({\varvec{n}},{\varvec{n}}')|&\le |A^{-1}({\varvec{n}},{\varvec{n}}')|+e^{-{\bar{\rho }}|{\varvec{n}}-{\varvec{n}}'|}. \end{aligned}$$

Lemma B.2

(Lemma 3.2, [JLS20]). Let \( \epsilon >0, {\bar{\rho }}\in (\epsilon ,\rho ]\), \(M_1\le N\) and let \(\Lambda \subset {\mathbb {Z}}^b\) with \(\mathrm{diam}(\Lambda )\le 2N+1\). Suppose that for any \({\varvec{k}}\in \Lambda \), there exists some \( W=W({\varvec{k}})\in {\mathcal {E}}_M\) with \(M_0\le M\le M_1\) such that \({\varvec{k}}\in W\subset \Lambda \), \(\mathrm{dist} ({\varvec{k}},\Lambda \backslash W)\ge {M}/{2}\) and

$$\begin{aligned} \Vert G_{W}\Vert&\le 2 e^{\sqrt{M}},\\ |G_{W}({\varvec{n}},{\varvec{n}}')|&\le 2e^{-{\bar{\rho }}|{\varvec{n}}-{\varvec{n}}'|}\ {\mathrm {for} \ |{\varvec{n}}-{\varvec{n}}'|\ge {M}/{10}}. \end{aligned}$$

We assume further that \(M_0\ge M_0(\epsilon , \rho , b)>0\). Then

$$\begin{aligned} \Vert G_{\Lambda }\Vert \le 4 (2M_1+1)^{b} e^{\sqrt{M_1}}. \end{aligned}$$

Lemma B.3

(Theorem 3.3, [JLS20]). Let \(\Lambda _1\subset \Lambda \subset {\mathbb {Z}}^{b}\) satisfy \(\mathrm{diam}(\Lambda )\le 2N+1\), \( \mathrm{diam}(\Lambda _1)\le N^{\frac{1}{3b}}\). Let \( M_0\ge (\log N)^{2}\) and \({\bar{\rho }}\in \left[ \frac{\rho }{2},\rho \right] \). Suppose that for any \({\varvec{k}}\in \Lambda \backslash \Lambda _1\), there exists some \( W=W({\varvec{k}})\in {\mathcal {E}}_M\) with \(M_0\le M\le N^{1/3}\) such that \({\varvec{k}}\in W\subset \Lambda \backslash \Lambda _1\), \(\mathrm{dist} ({\varvec{k}},\Lambda \backslash \Lambda _1\backslash W)\ge {M}/{2}\) and

$$\begin{aligned} \Vert G_{W}\Vert&\le e^{\sqrt{M}},\\ |G_{W}({\varvec{n}},{\varvec{n}}')|&\le e^{- \bar{\rho }|{\varvec{n}}-{\varvec{n}}'|}\ {\mathrm {for} \ |{\varvec{n}}-{\varvec{n}}'|\ge {M}/{10}}. \end{aligned}$$

Suppose further that

$$\begin{aligned} \Vert G_{\Lambda }\Vert \le e^{\sqrt{N}}. \end{aligned}$$

Then

$$\begin{aligned} |G_{\Lambda }({\varvec{n}},{\varvec{n}}')|\le e^{-(\bar{\rho }-\frac{C}{\sqrt{M_0}})|{\varvec{n}}-{\varvec{n}}'|}\ \mathrm {for}\ |{\varvec{n}}-{\varvec{n}}'|\ge {N}/{10}, \end{aligned}$$

where \(C=C(\rho ,b)>0\) and \(N\ge N_0(\rho ,b)>0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y. Absence of Eigenvalues of Analytic Quasi-Periodic Schrödinger Operators on \({\mathbb {R}}^d\). Commun. Math. Phys. 386, 1413–1436 (2021). https://doi.org/10.1007/s00220-021-04174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04174-z

Navigation