Skip to main content
Log in

Anderson localization for two interacting quasiperiodic particles

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We consider a system of two discrete quasiperiodic 1D particles as an operator on \(\ell^2(\mathbb Z^2)\) and establish Anderson localization at large disorder, assuming the potential has no cosine-type symmetries. In the presence of symmetries, we show localization outside of a neighborhood of finitely many energies. One can also add a deterministic background potential of low complexity, which includes periodic backgrounds and finite range interaction potentials. Such background potentials can only take finitely many values, and the excluded energies in the symmetric case are associated to those values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Warzel, S.: Localization bounds for multiparticle systems. Comm. Math. Phys 290(3), 903–934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Basu, R. Pollack and Roy M. Algorithms in Real Algebraic geometry. Springer, Berlin (2006)

  3. Bochnak, J., Coste, M., Roy, M.: Real Algebraic Geometry. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  4. Bourgain, J.: Green's Function Estimates for Lattice Schrödinger Operators and Applications. Princeton University Press, Princeton, Annals of Mathematics Studies (2005)

    Book  MATH  Google Scholar 

  5. Bourgain, J.: Estimates on Green's functions, localization and the quantum kicked rotor model. Ann. Math 156(1), 249–294 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: On the spectrum of lattice Schrödinger operators with deterministic potential I. J. Anal. Math. 87, 37–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain.: Anderson localization for quasi-periodic lattice Schrödinger operators on \(\mathbb{Z}^d, d\) arbitrary. Geom. Funct. Anal., (3)17 682–706 (2007)

  8. Bourgain, J., Goldstein, M.: On nonperturbative localization with quasi-periodic potential. Ann. of Math. 152, 835–879 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J., Goldstein, M., Schlag, W.: Anderson localization for Schrödinger operators on \({\mathbb{Z}}^2\) with quasi-periodic potential. Acta Math. 188(1), 41–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Bourgain and S. Jitomirskaya. Anderson localization for band model. Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 1745, 67–79

  11. J. Bourgain, S. Jitomirskaya and I. Kachkovskiy. Localization and delocalization for strongly interacting quasiperiodic particles, in preparation

  12. Burget, D.: A proof of Yomdin-Gromov's algebraic lemma. Israel J. Math. 168, 291–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chulaevsky, V., Suhov, Yu.: Multi-Scale Analysis for Random Quantum Systems with Interaction. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  14. D. Damanik, A. Gorodetski and W. Yessen. The Fibonacci Hamiltonian. Inv. Math., 206(3), 629–692

  15. Elgart, A., Sodin, S.: The trimmed Anderson model at strong disorder: localisation and its breakup. J. Spectr. Theory 7(1), 87–110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goldstein, M., Schlag, W.: Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. Math. 154(1), 155–203 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frahm, K., Shepelyansky, D.: Freed by interaction kinetic states in the Harper model. D. Eur. Phys. J. B 88, 337 (2015)

    Article  MathSciNet  Google Scholar 

  18. Gabrielov, A.: Projections of semi-analytic sets. Funct. Anal. Appl. 2(4), 282–291 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Gromov. Entropy, homology and semialgebraic geometry. In: Séminaire Bourbaki, vol. 1985/86, exp. no. 661. Astérique, 145 – 146 (1987), 5, 225–240

  20. Jitomirskaya, S., Schultz-Baldes, H., Stoltz, G.: Delocalization in random polymer models. Comm. Math. Phys. 233(1), 27–48 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Klein and S. Nguyen. The bootstrap multiscale analysis of the multi-particle Anderson model. J. Stat. Phys., 151(5) (2013), 938–973.

  22. B. Ya. Levin. Lectures on entire functions, American Mathematical Society Translations (1996)

  23. Pila, J., Wilkie, A.: The rational points of a definable set. Duke Math. J. 133(3), 591–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wolff, T.: An improved bound for Kakeya type maximal functions. Rev. Mat. Iberoam. 11(3), 651–674 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yomdin, Y.: \(C^k\)-resolution of semi-algebraic mappings. Israel J. Math. 57, 301–317 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Kachkovskiy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourgain, J., Kachkovskiy, I. Anderson localization for two interacting quasiperiodic particles. Geom. Funct. Anal. 29, 3–43 (2019). https://doi.org/10.1007/s00039-019-00478-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-019-00478-4

Navigation