Skip to main content
Log in

Disconnection and Entropic Repulsion for the Harmonic Crystal with Random Conductances

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study level-set percolation for the harmonic crystal on \({\mathbb {Z}}^d\), \(d \ge 3\), with uniformly elliptic random conductances. We prove that this model undergoes a non-trivial phase transition at a critical level that is almost surely constant under the environment measure. Moreover, we study the disconnection event that the level-set of this field below a level \(\alpha \) disconnects the discrete blow-up of a compact set \(A \subseteq {\mathbb {R}}^d\) from the boundary of an enclosing box. We obtain quenched asymptotic upper and lower bounds on its probability in terms of the homogenized capacity of A, utilizing results from Neukamm, Schäffner and Schlömerkemper (SIAM J Math Anal 49(3):1761–1809, 2017). Furthermore, we give upper bounds on the probability that a local average of the field deviates from some profile function depending on A, when disconnection occurs. The upper and lower bounds concerning disconnection that we derive are plausibly matching at leading order. In this case, this work shows that conditioning on disconnection leads to an entropic push-down of the field. The results in this article generalize the findings of Nitzschner (Electron J Probab 23:105, 2018) and Chiarini and Nitzschner (Probab Theory Relat Fields 177(1–2):525–575, 2020) which treat the case of constant conductances. Our proofs involve novel “solidification estimates” for random walks, which are similar in nature to the corresponding estimates for Brownian motion derived by Nitzschner and Sznitman (J Eur Math Soc. 22:2629–2672, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  2. Alicandro, R., Focardi, M., Gelli, M.S.: Finite-difference approximation of energies in fracture mechanics. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 29(3), 671–709 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Andres, S., Barlow, M., Deuschel, J.-D., Hambly, B.: Invariance principle for the random conductance model. Probab. Theory Relat. Fields 156(3–4), 535–580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andres, S., Chiarini, A., Deuschel, J.-D., Slowik, M.: Quenched invariance principle for random walks with time-dependent ergodic degenerate weights. Ann. Probab. 46(1), 302–336 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andres, S., Deuschel, J.-D., Slowik, M.: Invariance principle for the random conductance model in a degenerate ergodic environment. Ann. Probab. 43(4), 1866–1891 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andres, S., Deuschel, J.-D., Slowik, M.: Heat kernel estimates and intrinsic metric for random walks with general speed measure under degenerate conductances. Electron. Commun. Probab. 24 (2019)

  7. Armstrong, S., Dario, P.: Elliptic regularity and quantitative homogenization on percolation clusters. Commun. Pure Appl. Math. 71(9), 1717–1849 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barlow, M.: Random walks on supercritical percolation clusters. Ann. Probab. 32(4), 3024–3084 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barlow, M., Deuschel, J.-D.: Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38(1), 234–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barlow, M.T.: Random Walks and Heat Kernels on Graphs, vol. 438. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  11. Bella, P., Schäffner, M.: Quenched invariance principle for random walks among random degenerate conductances. Ann. Probab. 48(1), 296–316 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Biskup, M.: Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Biskup, M., Chen, X., Kumagai, T., Wang, J.: Quenched invariance principle for a class of random conductance models with long-range jumps (2020). arXiv preprint arXiv:2004.01971

  14. Biskup, M., Rodriguez, P.-F.: Limit theory for random walks in degenerate time-dependent random environments. J. Funct. Anal. 274(4), 985–1046 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Biskup, M., Spohn, H.: Scaling limit for a class of gradient fields with nonconvex potentials. Ann. Probab. 39(1), 224–251 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bolthausen, E., Deuschel, J.-D.: Critical large deviations for Gaussian fields in the phase transition regime I. Ann. Probab. 21, 1876–1920 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bolthausen, E., Deuschel, J.-D., Giacomin, G.: Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29, 1670–1692 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bolthausen, E., Deuschel, J.-D., Zeitouni, O.: Entropic repulsion of the lattice free field. Commun. Math. Phys. 170(2), 417–443 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bricmont, J., Lebowitz, J.L., Maes, C.: Percolation in strongly correlated systems: the massless Gaussian field. J. Stat. Phys. 48(5–6), 1249–1268 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Caputo, P., Ioffe, D.: Finite volume approximation of the effective diffusion matrix: the case of independent bond disorder. Ann. Probab. 39(3), 505–525 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Chiarini, A., Nitzschner, M.: Entropic repulsion for the Gaussian free field conditioned on disconnection by level-sets. Probab. Theory Relat. Fields 177(1–2), 525–575 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chiarini, A., Nitzschner, M.: Entropic repulsion for the occupation-time field of random interlacements conditioned on disconnection. Ann. Probab. 48(3), 1317–1351 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Delmotte, T.: Inégalité de Harnack elliptique sur les graphes. Colloquium Mathematicae 72(1), 19–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Deuschel, J.-D., Giacomin, G.: Entropic repulsion for the free field: pathwise characterization in \(d \ge 3\). Commun. Math. Phys. 206, 447–462 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Deuschel, J.-D., Pisztora, A.: Surface order large deviations for high-density percolation. Probab. Theory Relat. Fields 104(4), 467–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Deuschel, J.-D., Stroock, D.: Large Deviations, vol. 342. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  27. Ding, J., Li, L.: Chemical distances for percolation of planar Gaussian free fields and critical random walk loop soups. Commun. Math. Phys. 360(2), 523–553 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Ding, J., Wirth, M.: Percolation for level-sets of Gaussian free fields on metric graphs. Ann. Probab. 48(3), 1411–1435 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Drewitz, A., Prévost, A., Rodriguez, P.-F.: Geometry of Gaussian free field sign clusters and random interlacements (2018). arXiv preprint arXiv:1811.05970

  30. Drewitz, A., Prévost, A., Rodriguez, P.-F.: The sign clusters of the massless Gaussian free field percolate on \({\mathbb{Z}}^d\), \(d\ge 3\) (and more). Commun. Math. Phys. 362(2), 513–546 (2018)

    Article  MATH  Google Scholar 

  31. Drewitz, A., Ráth, B., Sapozhnikov, A.: On chemical distances and shape theorems in percolation models with long-range correlations. J. Math. Phys. 55(8), 083307 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Duminil-Copin, H., Goswami, S., Rodriguez, P.-F., Severo, F.: Equality of critical parameters for percolation of Gaussian free field level-sets (2020). arXiv preprint arXiv:2002.07735

  33. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, vol. 19. Walter de Gruyter, Berlin (2010)

    Book  MATH  Google Scholar 

  34. Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. 199(2), 455–515 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Goswami, S., Rodriguez, P.-F., Severo, F.: On the radius of Gaussian free field excursion clusters (2021). arXiv preprint arXiv:2101.02200

  36. Hambly, B., Barlow, M.: Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Probab. 14, 1–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, X.: A lower bound for disconnection by simple random walk. Ann. Probab. 45(2), 879–931 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, X., Sznitman, A.-S.: A lower bound for disconnection by random interlacements. Electron. J. Probab. 19, 1–26 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, X., Sznitman, A.-S.: Large deviations for occupation time profiles of random interlacements. Probab. Theory Relat. Fields 161(1–2), 309–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lupu, T.: From loop clusters and random interlacements to the free field. Ann. Probab. 44(3), 2117–2146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Molchanov, S.A., Stepanov, A.K.: Percolation in random fields. I. Theor. Math. Phys. 55(2), 478–484 (1983)

    Article  MathSciNet  Google Scholar 

  42. Neukamm, S., Schäffner, M., Schlömerkemper, A.: Stochastic homogenization of nonconvex discrete energies with degenerate growth. SIAM J. Math. Anal. 49(3), 1761–1809 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nitzschner, M.: Disconnection by level sets of the discrete Gaussian free field and entropic repulsion. Electron. J. Probab. 23, 105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nitzschner, M., Sznitman, A.-S.: Solidification of porous interfaces and disconnection. J. Eur. Math. Soc. 22, 2629–2672 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Popov, S., Ráth, B.: On decoupling inequalities and percolation of excursion sets of the Gaussian free field. J. Stat. Phys. 159(2), 312–320 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Popov, S., Teixeira, A.: Soft local times and decoupling of random interlacements. J. Eur. Math. Soc. 17(10), 2545–2593 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Procaccia, E., Rosenthal, R., Sapozhnikov, A.: Quenched invariance principle for simple random walk on clusters in correlated percolation models. Probab. Theory Relat. Fields 166(3–4), 619–657 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rodriguez, P.-F.: Decoupling inequalities for the Ginzburg–Landau \(\nabla \phi \) models (2016). arXiv preprint arXiv:1612.02385

  49. Rodriguez, P.-F., Sznitman, A.-S.: Phase transition and level-set percolation for the Gaussian free field. Commun. Math. Phys. 320(2), 571–601 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Sidoravicius, V., Sznitman, A.-S.: Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Relat. Fields 129(2), 219–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sznitman, A.-S.: An isomorphism theorem for random interlacements. Electron. Commun. Probab. 17, 9 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sznitman, A.-S.: Topics in Occupation Times and Gaussian Free Fields, vol. 16. Zurich Lectures in Advanced Mathematics, EMS (2012)

  53. Sznitman, A.-S.: Disconnection and level-set percolation for the Gaussian free field. J. Math. Soc. Jpn. 67(4), 1801–1843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sznitman, A.-S.: Disconnection, random walks, and random interlacements. Probab. Theory Relat. Fields 167(1–2), 1–44 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sznitman, A.-S.: On bulk deviations for the local behavior of random interlacements (2019). arXiv preprint arXiv:1906.05809

  56. Sznitman, A.-S.: On macroscopic holes in some supercritical strongly dependent percolation models. Ann. Probab. 47(4), 2459–2493 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sznitman, A.-S.: Excess deviations for points disconnected by random interlacements (2020). arXiv preprint arXiv:2009.00601

Download references

Acknowledgements

The authors wish to thank Alain-Sol Sznitman for helpful discussions and valuable comments at various stages of this project. The authors also wish to thank Mathias Schäffner for helpful discussions about the \(\varGamma \)-convergence result in [42]. Moreover, the authors thank the anonymous referees for their careful revision of the article and for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Nitzschner.

Additional information

Communicated by J. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Theorem 4.7

Proof of Theorem 4.7

In this appendix we prove Theorem 4.7. The proof proceeds as the one in [44] using “I-families” with the respective modifications. We introduce these I-families in the discrete case and sketch the proof, focusing on the part where Proposition 4.6 is applied. Let us first prove the maximality property (4.43). Note that for \(U_0 \in {\mathcal {U}}_{\ell _*, A}\), \(x \in A\), one has \(U_0 - x \in {\mathcal {U}}_{\ell _*, \{ 0\}}\) and \(\text {Res}(U_0 - x,I,J,L, \ell _*) =\text {Res}(U_0 ,I,J,L, \ell _*) - x\). For a given \(\omega \in \varOmega _\lambda \), one has

$$\begin{aligned} P^\omega _x[H_{\text {Res}} = \infty ] = P^{\tau _x\omega }_0[H_{\text {Res} - x} = \infty ] \le \varPhi _{J,I,L}, \end{aligned}$$
(A.1)

so the maximality follows. We turn to (discrete) I-families. Let \(I, J \ge 1\) and \(L \ge L(J)\) be fixed, \(\ell _*\ge 0\) (IJL)-compatible, \(\omega \in \varOmega _\lambda \) and \(U_0 \in {\mathcal {U}}_{\ell _*, \{ 0 \} }\) (we refer to (4.24) and (4.39) for the respective definitions). Recall also the definition of \(\ell _{\text {min}}(\cdot )\) from (4.18). An I-family consists of stopping times \((S_i)_{i = 0}^I\), a random finite subset \({\mathcal {L}}\subseteq (J+1) L {\mathbb {N}}\cap [\ell _{\min }((200J)^{-1}) +LJ, \infty )\), and integer valued random variables \({\widehat{\ell }}_i\), \(1 \le i \le I\), such that

$$\begin{aligned} \left\{ \begin{array}{rl} \mathrm{(i)} &{} 0 \le S_0 \le S_1 \le \cdots \le S_I,\ P^\omega _0\text{-a.s. } \text{ finite } \text{ stopping } \text{ times, } \\ \mathrm{(ii)} &{} {\mathcal {L}} \text{ is } \text{ an } {\mathcal {F}}_{S_0}\text{-measurable } \text{ finite } \text{ subset } \text{ of } \\ &{} {\mathcal {L}}\subseteq (J+1) L {\mathbb {N}}\cap [\ell _{\min }((200J)^{-1}) +LJ, \infty )\text{, } \text{ and } |{\mathcal {L}}| \ge I, \\ {\mathrm{(iii)}} &{} {\widehat{\ell }}_i,\ 1 \le i \le I \text{ are } {\mathcal {F}}_{S_i}\text{-measurable, } \text{ pairwise } \text{ distinct } \text{ and } {\mathcal {L}}\text{-valued }, \\ {\mathrm{(iv)}} &{} P^\omega _0\text{-a.s., } \sigma _{{\widehat{\ell }}_i }(X_{S_i}) \in [\tfrac{1}{2} - \tfrac{1}{2^{\ell _{\min }((200J)^{-1}) } }, \tfrac{1}{2} + \tfrac{1}{2^{\ell _{\min }((200J)^{-1}) } }],\ 1 \le i \le I. \end{array}\right. \end{aligned}$$
(A.2)

The “canonical” I-family as defined in (2.12) of [44] also exists in the discrete case, if we replace the conditions \(\sigma _\ell (X_{S_i}) = \tfrac{1}{2}\) by \(\sigma _{\ell _i }(X_{S_i}) \in [\tfrac{1}{2} - \tfrac{1}{2^{\ell _{\min }((200J)^{-1}) } }, \tfrac{1}{2} + \tfrac{1}{2^{\ell _{\min }((200J)^{-1}) } }]\). Given a general I-family as above, we also define for \(1 \le i \le I\) the stopping times

$$\begin{aligned} T_i = \inf \{ s \ge S_i \, : \, |X_s - X_{S_i}|_\infty \ge 2 \cdot 2^{{\widehat{\ell }}_i} \}, \end{aligned}$$
(A.3)

and “intermediate labels” and “labels”

$$\begin{aligned} {\mathcal {L}}_{\text {int}} = \{ \ell - jL \, : \, \ell \in {\mathcal {L}}, 1 \le j \le J \}, \qquad {\mathcal {L}}_*= {\mathcal {L}}\cup {\mathcal {L}}_{\text {int}}. \end{aligned}$$
(A.4)

Finally, we will need for \(1 \le k \le J\) the \(({\mathcal {L}}_*,k)\)-resonance set

$$\begin{aligned} \text {Res}_{({\mathcal {L}}_*,k)} = \bigg \{ x \in {\mathbb {Z}}^d \, : \, \sum _{\ell \in {\mathcal {L}}_*} \mathbb {1}_{ \{ {\widetilde{\sigma }}_\ell (x) \in [{\widetilde{\alpha }}, 1 - {\widetilde{\alpha }} ] \} } \ge k \bigg \}, \end{aligned}$$
(A.5)

and the quantity

$$\begin{aligned} \varGamma ^{\omega ,(J)}_{k}(I) = \sup P^\omega _0[\inf \{ s \ge S_0 \, : \, X_s \in \text {Res}_{({\mathcal {L}}_*,k)} \} > \max _{1 \le i \le I} T_i ], \end{aligned}$$
(A.6)

for \(1 \le k \le J\), \(I \ge 1\) (with the supremum over all I-families) and \(\varGamma ^{\omega , (J)}_k(I) =1\) whenever \(I \le 0\). The following discrete analogue of Lemma 2.2 in [44] is the main ingredient of the proof of Theorem 4.7.

Lemma A.1

For \(\omega \in \varOmega _\lambda \), one has

$$\begin{aligned} \varGamma ^{\omega ,(J)}_1(I) = 0, \qquad \text {for all } I \ge 1 \end{aligned}$$
(A.7)

and for \(1 \le k < J\), \(I \ge 1\), \(\varDelta = \lfloor \sqrt{I} \rfloor \),

$$\begin{aligned} \varGamma ^{\omega , (J)}_{k+1}(I) \le (1 - c_7(J))^{\sqrt{I} - 1} + I^{1 + \tfrac{k-1}{2}} \varGamma ^{\omega , (J)}_k( \varDelta - k + 1). \end{aligned}$$
(A.8)

Proof

We only sketch the proof. The first part follows by noting that \(P^\omega _0\)-a.s., \(\sigma _{{\widehat{\ell }}_1}(X_{S_1}) \in [\tfrac{1}{2} - \tfrac{1}{2^{\ell _{\min }((200J)^{-1}) } }, \tfrac{1}{2} + \tfrac{1}{2^{\ell _{\min }((200J)^{-1}) } }]\), and since \(J \ge 1\), \(2^{-\ell _{\min }(1/(200J)) } \le \tfrac{1}{1600}\), hence \(U_1\) and \(U_0\) have relative volumes in \(B(X_{S_1}, 2^{{\widehat{\ell }}_1})\) at least \(\tfrac{799}{1600}\) and at most \(\tfrac{801}{1600}\), or in other words, \({\widetilde{\sigma }}_{{\widehat{\ell }}_1}(X_{S_1}) \in [{\widetilde{\alpha }}, 1- {\widetilde{\alpha }}]\) and \(\varGamma ^{\omega ,(J)}_1(I) = 0\) is immediate since \(\inf \{s \ge S_0\,: X_s \in \text {Res}_{({\mathcal {L}}_*,1)} \} \le S_1 \le \max _{1 \le i \le I} T_i\), \(P^\omega _0\)-a.s., proving (A.7).

We set \(m_\varDelta = \lfloor \tfrac{I - 1}{\varDelta } \rfloor \), such that \(i_\varDelta = 1 + m_\varDelta \varDelta \le I < 1 + (m_\varDelta + 1)\varDelta \). For \(I \ge 2\), we have

$$\begin{aligned} P^\omega _0[\inf \{ s \ge S_0 : X_s \in \text {Res}_{({\mathcal {L}}_*,k+1)} \} > \max _{1 \le i \le I} T_i ] \le a_1^\omega + a_2^\omega , \end{aligned}$$
(A.9)

where

$$\begin{aligned} a_1^\omega&= P^\omega _0[T_i < S_{i + \varDelta } \text { for all } 1 \le i \le I - \varDelta , \inf \{ s \ge S_0 : X_s \in \text {Res}_{({\mathcal {L}}_*,k+1)} \} > \max _{1 \le i \le I} T_i ], \end{aligned}$$
(A.10)
$$\begin{aligned} a_2^\omega&= P^\omega _0[T_i \ge S_{i + \varDelta } \text { for some } 1 \le i \le I - \varDelta , \inf \{ s \ge S_0 \, : \, X_s \in \text {Res}_{({\mathcal {L}}_*,k+1)} \}\nonumber \\&> \max _{1 \le i \le I} T_i ]. \end{aligned}$$
(A.11)

For \(a_2^\omega \), one has the bound

$$\begin{aligned} a_2^\omega \le I^{1 + \frac{k-1}{2}} \varGamma ^{\omega , (J) }_k(\varDelta - k + 1). \end{aligned}$$
(A.12)

Its proof proceeds exactly as in the Brownian case, see (2.29)–(2.33) of [44] and is thus omitted. For the bound on \(a_1^\omega \), note that one has

$$\begin{aligned} \begin{aligned} a_1^\omega&\le E^\omega _0\big [S_1< T_1< \cdots< S_{i_\varDelta }< T_{i_\varDelta }< \inf \{s \ge S_0\, : \, X_s \in \text {Res}_{({\mathcal {L}}_*,k+1)} \}] \\&\le E^\omega _0\big [S_1< T_1< \cdots< S_{i_\varDelta }< \inf \{s \ge S_0\, : \, X_s \in \text {Res}_{({\mathcal {L}}_*,k+1)} \}, \\&{\widetilde{P}}^\omega _{X_{S_{i_\varDelta }}}[ \inf \{s \ge 0\, : \, |{\widetilde{X}}_s - {\widetilde{X}}_0|_\infty \ge 2 \cdot 2^{{\widehat{\ell }}_{i_\varDelta } } \} < \inf \{ s \ge 0\, : \, {\widetilde{X}}_s \in \text {Res}_{({\mathcal {L}}_*,k+1)} \} ] \big ], \end{aligned} \end{aligned}$$
(A.13)

having used the strong Markov property at time \(S_{i_\varDelta }\) for the second bound, and where \(({\widetilde{X}}_\cdot )\) denotes the canonical process which behaves as a random walk among conductances \(\omega \), starting from \(X_{S_{i_\varDelta }}\) under \({\widetilde{P}}^\omega _{X_{S_{i_\varDelta }}}\), and \({\mathcal {L}}_*\) and \({\widehat{\ell }}_{i_\varDelta }\) are not integrated under \({\widetilde{P}}^\omega _{X_{S_{i_\varDelta }}}\).

We use now Proposition 4.6: Choose \(x = X_{S_{i_\varDelta }}\) and recall that \({\widehat{\ell }}_{i_\varDelta } - LJ \ge \ell _{\text {min}}((200J)^{-1})\) (by (A.2), (ii)) as well as \(|\sigma _{\ell _{i_\varDelta }}(X_{S_{i_\varDelta }}) -\frac{1}{2}| \le 2^{-\ell _{\text {min}}((200J)^{-1}) }\), see (A.2), (iv). Since \(k + 1 \le J\), we have on an event that has \({\widetilde{P}}_{X_{S_{i_\varDelta }}}^\omega \)-probability bigger or equal to \(c_7(J)\) that \({\widetilde{X}}_{\gamma _J} \in \text {Res}_{({\mathcal {L}}_*,k+1)}\), but \(\sup \{ |{\widetilde{X}}_s - {\widetilde{X}}_0| \, : \, 0 \le s \le \gamma _J \} \le \tfrac{3}{2} \cdot 2^{{\widehat{\ell }}_{i_\varDelta }}\), so on this event, the event within \({\widetilde{P}}^\omega _{X_{S_{i_\varDelta }}}\) in the last line of (A.13) does not occur. We obtain that the expression in the last line of (A.13) is bounded above by

$$\begin{aligned} \begin{aligned} a_1^\omega&\le E^\omega _0\big [S_1< T_1< \cdots< T_{i_\varDelta - \varDelta } < \inf \{s \ge 0\, : \, X_s \in \text {Res}_{({\mathcal {L}}_*,k+1)} \}] (1-c_7(J)) \\&{\mathop {\le }\limits ^{\text {(induction)}}} (1 - c_7(J))^{m_\varDelta + 1} \le (1 - c_7(J))^{\sqrt{I} - 1}, \end{aligned} \end{aligned}$$
(A.14)

using in the last step that \(m_\varDelta > \frac{I - 1}{\sqrt{I}} \ge \sqrt{I} -1\). By combining the bounds (A.12) and (A.14), we obtain:

$$\begin{aligned}&P^\omega _0[\inf \{ s \ge S_0 : X_s \in \text {Res}_{({\mathcal {L}}_*,k+1)} \} > \max _{1 \le i \le I} T_i ]\nonumber \\&\quad \le (1 - c_7(J))^{\sqrt{I} - 1} + I^{1 + \tfrac{k-1}{2}} \varGamma ^{\omega , (J)}_k( \varDelta - k + 1) \end{aligned}$$
(A.15)

Finally, we take the supremum over all I-families, which yields (A.8) in the case where \(I \ge 2\). For \(I = 1\), the claim of (A.8) is true, since the right-hand side is bigger or equal to 1. \(\quad \square \)

We now turn to the proof of (4.43) of Theorem 4.7. Similar to (2.34) of [44], we set

$$\begin{aligned} {\widetilde{\varGamma }}^{(J)}_k(I) = {\left\{ \begin{array}{ll} \sup \limits _{\ell _*} \sup \limits _{U_0 \in {\mathcal {U}}_{\ell _*, \{0 \}} }\sup \limits _{\omega \in \varOmega _\lambda } \varGamma ^{\omega , (J)}_k(I), &{} \text { for }1 \le k \le J \text { and } I \ge 1, \\ 1, &{} \text { for } 1\le k \le J \text { and } I \le 0. \end{array}\right. } \end{aligned}$$
(A.16)

where in the first case, the supremum in \(\ell _*\) is over all (IJL)-compatible \(\ell _*\ge 0\). Using the “canonical” I-family, one has that

$$\begin{aligned} \varPhi _{J,I,L} \le {\widetilde{\varGamma }}^{(J)}_J(I). \end{aligned}$$
(A.17)

Using (A.7) and (A.8) of Lemma A.1, we receive upon taking the suprema over \(\omega \in \varOmega _\lambda \), \(U_0 \in {\mathcal {U}}_{\ell _*,\{ 0\}}\) and (IJL)-compatible \(\ell _*\ge 0\):

$$\begin{aligned} \begin{aligned}&{\widetilde{\varGamma }}^{(J)}_1(I) = 0, \text { for } I \ge 1, \\&{\widetilde{\varGamma }}^{(J)}_{k+1}(I) \le (1 - c_7(J))^{\sqrt{I} - 1} + I^{1 + \tfrac{k-1}{2}} {\widetilde{\varGamma }}^{(J)}_k( \varDelta - k + 1), \text { for }1 \le k \le J, I \ge 1. \end{aligned} \end{aligned}$$
(A.18)

The proof of (4.43) now follows by induction on k, in exactly the same way as (2.37)–(2.38) of [44].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiarini, A., Nitzschner, M. Disconnection and Entropic Repulsion for the Harmonic Crystal with Random Conductances. Commun. Math. Phys. 386, 1685–1745 (2021). https://doi.org/10.1007/s00220-021-04153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04153-4

Navigation