Skip to main content
Log in

Phase Transition and Level-Set Percolation for the Gaussian Free Field

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider level-set percolation for the Gaussian free field on \({\mathbb{Z}^{d}}\), d ≥ 3, and prove that, as h varies, there is a non-trivial percolation phase transition of the excursion set above level h for all dimensions d ≥ 3. So far, it was known that the corresponding critical level h *(d) satisfies h *(d) ≥ 0 for all d ≥ 3 and that h *(3) is finite, see Bricmont et al. (J Stat Phys 48(5/6):1249–1268, 1987). We prove here that h *(d) is finite for all d ≥ 3. In fact, we introduce a second critical parameter h **h *, show that h **(d) is finite for all d ≥ 3, and that the connectivity function of the excursion set above level h has stretched exponential decay for all h > h **. Finally, we prove that h * is strictly positive in high dimension. It remains open whether h * and h ** actually coincide and whether h * > 0 for all d ≥ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler R.J., Taylor J.E.: Random fields and geometry. Springer, New York (2007)

    MATH  Google Scholar 

  2. Bricmont J., Lebowitz J.L., Maes C.: Percolation in strongly correlated systems: the massless Gaussian field. J. Stat. Phys. 48(5/6), 1249–1268 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Cramér H., Leadbetter M.R.: Stationary and related stochastic processes. Wiley, New York (1967)

    MATH  Google Scholar 

  4. Campanino M., Russo L.: An upper bound on the critical percolation probability for the three-dimensional cubic lattice. Ann. Prob. 13(2), 478–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garet, O.: Percolation transition for some excursion sets. Elec. J. Prob. 9, paper no. 10, 255–292 (2004)

    Google Scholar 

  6. Georgii, H.-O., Häggström, O., Maes, C.: The random geometry of equilibrium phases. Phase Transitions and Critical Phenomena, edited by C. Domb and J. Lebowitz, 14, London-New York: Academic Press, 2001, pp. 1–142

  7. Gandolfi A., Keane M., Russo L.: On the uniqueness of the infinite occupied cluster in dependent two-dimensional site percolation. Ann. Prob. 16(3), 1147–1157 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grimmett, G.R.: Percolation. Berlin: Springer, 2nd ed., 1999

  9. Grimmett G.R., Marstrand J.M.: The supercritical phase of percolation is well-behaved. Proc. Roy. Soc. (London), Series A 430, 439–457 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Häggström O., Jonasson J.: Uniqueness and non-uniqueness in percolation theory. Probab. Surv. 3, 289–344 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lawler G.F.: Intersections of random walks. Birkhäuser, Basel (1991)

    Book  MATH  Google Scholar 

  12. Lebowitz J.L., Saleur H.: Percolation in strongly correlated systems. Phys. A 138, 194–205 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liggett T.M.: Interacting Particle Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  14. Liggett T.M., Schonmann R.H., Stacey A.M.: Domination by product measures. Ann. Prob. 25(1), 71–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marinov, V.: Percolation in correlated systems. PhD Thesis, Rutgers University. Available online at: http://www.books.google.com/books?isbn=0549701338, 2007

  16. Montroll E.W.: Random walks in multidimensional spaces, especially on periodic lattices. J. Soc. Indus. Appl. Math. 4(4), 241–260 (1956)

    Article  MathSciNet  Google Scholar 

  17. Molchanov S.A., Stepanov A.K.: Percolation in random fields I. Teoret. Mat. Fiz. 55(2), 246–256 (1983)

    MathSciNet  Google Scholar 

  18. Pisztora A.: Surface order large deviations for Ising, Potts, and percolation models. Prob. Th. Rel. Fields 104, 427–466 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ráth, B., Sapozhnikov, A.: The effect of small quenched noise on connectivity properties of random interlacements. Available at http://arxiv.org/abs/1109.5086v2 [math.PR], 2012

  20. Reed M., Simon B.: Methods of modern mathematical physics, Vol. II: Fourier-analysis, self-adjointness. Academic Press, New York (1975)

    Google Scholar 

  21. Sidoravicius V., Sznitman A.S.: Connectivity bounds for the vacant set of random interlacements. Ann. Inst. H. Poincaré, Prob. Stat. 46(4), 976–990 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Spitzer, F.: Principles of Random Walk. New York: Springer, 2nd ed., 1976

  23. Sznitman A.S.: Vacant set of random interlacements and percolation. Ann. Math. 171, 2039–2087 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sznitman A.S.: Decoupling inequalities and interlacement percolation on \({G \times \mathbb{Z}}\). Invent. Math. 187, 645–706 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Sznitman A.S.: An isomorphism theorem for random interlacements. Electron. Commun. Prob. 17(9), 1–9 (2012)

    MathSciNet  Google Scholar 

  26. Sznitman, A.S.: Topics in occupation times and Gaussian free fields. Zurich Lecture Notes in Advanced Mathematics, Zürich: EMS, 2012

  27. Teixeira A.: On the size of a finite vacant cluster of random interlacements with small intensity. Prob. Th. Rel. Fields 150(3-4), 529–574 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain-Sol Sznitman.

Additional information

Communicated by M. Aizenman

This research was supported in part by the grant ERC-2009-AdG 245728-RWPERCRI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, PF., Sznitman, AS. Phase Transition and Level-Set Percolation for the Gaussian Free Field. Commun. Math. Phys. 320, 571–601 (2013). https://doi.org/10.1007/s00220-012-1649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1649-y

Keywords

Navigation