Skip to main content
Log in

Disconnection, random walks, and random interlacements

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We consider random interlacements on \({\mathbb {Z}}^d\), \(d\ge 3\), when their vacant set is in a strongly percolative regime. We derive an asymptotic upper bound on the probability that the random interlacements disconnect a box of large side-length from the boundary of a larger homothetic box. As a corollary, we obtain an asymptotic upper bound on a similar quantity, where the random interlacements are replaced by the simple random walk. It is plausible, but open at the moment, that these asymptotic upper bounds match the asymptotic lower bounds obtained by Xinyi Li and the author in (Electron. J. Probab. 19(17):1–26, 2014), for random interlacements, and by Xinyi Li in (A lower bound on disconnection by simple random walk. arXiv:1412.3959, 2014), for the simple random walk. In any case, our bounds capture the principal exponential rate of decay of these probabilities, in any dimension \(d \ge 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van den Berg, M., Bolthausen, E., den Hollander, F.: Moderate deviations for the volume of the Wiener sausage. Ann. Math. 153(2), 355–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cerf, R.: Large deviations for three dimensional supercritical percolation. Astérisque 267, Société Mathématique de France (2000)

  3. Černý, J., Teixeira, A.: From random walk trajectories to random interlacements. Ensaios Matemáticos, vol. 23 (2012)

  4. Comets, F., Gallesco, Ch., Popov, S., Vachkovskaia, M.: On large deviations for the cover time of two-dimensional torus. Electron. J. Probab. 96, 1–18 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Drewitz, A., Ráth, B., Sapozhnikov, A.: Local percolative properties of the vacant set of random interlacements with small intensity. Ann. Inst. Henri Poincaré Probab. Stat. 50(4), 1165–1197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Drewitz, A., Ráth, B., Sapozhnikov, A.: An introduction to random interlacements. SpringerBriefs in Mathematics, Berlin (2014)

    Book  MATH  Google Scholar 

  7. Durrett, R.: Probability: theory and examples. Wadsworth and Brooks/Cole, Pacific Grove (1991)

    MATH  Google Scholar 

  8. Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  9. Lawler, G.F.: Intersections of random walks. Birkhäuser, Basel (1991)

    Book  MATH  Google Scholar 

  10. Li, X.: A lower bound on disconnection by simple random walk. Ann. Probab. (2014, to appear). arXiv:1412.3959

  11. Li, X., Sznitman, A.S.: Large deviations for occupation time profiles of random interlacements. Probab. Theory Relat. Fields 161, 309–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, X., Sznitman, A.S.: A lower bound for disconnection by random interlacements. Electron. J. Probab. 19(17), 1–26 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Marcus, M.B., Rosen, J.: Markov processes, Gaussian processes, and local times. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  14. Popov, S., Teixeira, A.: Soft local times and decoupling of random interlacements. J. Eur. Math. Soc. (2012, to appear). arXiv:1212.1605

  15. Port, S., Stone, C.: Brownian motion and classical potential theory. Academic Press, New York (1978)

    MATH  Google Scholar 

  16. Sidoravicius, V., Sznitman, A.S.: Percolation for the vacant set of random interlacements. Commun. Pure Appl. Math. 62(6), 831–858 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Spitzer, F.: Principles of random walk, 2nd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  18. Sznitman, A.S.: Vacant set of random interlacements and percolation. Ann. Math. 171, 2039–2087 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sznitman, A.S.: Decoupling inequalities and interlacement percolation on \({G} \times {Z}\). Invent. Math. 187(3), 645–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sznitman, A.S.: An isomorphism theorem for random interlacements. Electron. Commun. Probab. 17(9), 1–9 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Sznitman, A.S.: Random interlacements and the Gaussian free field. Ann. Probab. 40(6), 2400–2438 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sznitman, A.S.:. Disconnection and level-set percolation for the Gaussian free field. J. Math. Soc. Japan 7(4),1801–1843 (2015, special issue on the centennial of the birth of Kiyosi Itô)

  23. Teixeira, A.: On the size of a finite vacant cluster of random interlacements with small intensity. Probab. Theory Relat. Fields 150(3–4), 529–574 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Windisch, D.: On the disconnection of a discrete cylinder by a biased random walk. Ann. Appl. Probab. 18(4), 1441–1490 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain-Sol Sznitman.

Appendix

Appendix

In this appendix we provide the proof of Lemma 2.3. The arguments are similar to p. 50 of [9]. The proof is included for the reader’s convenience.

Proof of Lemma 2.3

The uniqueness in the statement is immediate. Only the existence is at stake. We first observe that if \(z \in \partial U\) does not belong to the boundary the connected component of U containing B(0, L), all three members of (2.21) vanish (and (2.21) holds with \(\psi ^{A,U}_{y,z} = 0\)). We can thus assume from now on that U is connected.

The first equality \(P_z[H_A < \widetilde{H}_{\partial U}, X_{H_A} = y] = P_y[T_U < \widetilde{H}_A, X_{T_U} = z]\), with \(y \in A\) and \(z \in \partial U\), is obtained by time-reversal (one sums over the possible values in the discrete skeleton of the walk, of the entrance time in A, for the probability on the left, and of the exit time of U, for the probability on the right). It then suffices to show that when \(K \ge c\), for \(y \in A\), \(z \in \partial U\), one has

$$\begin{aligned} P_y[T_U < \widetilde{H}_A, X_{T_U} = z] = e_A(y) \,P_0 [X_{T_U} = z] (1 + \psi ), \;\hbox {with }|\psi | \le c'/K. \end{aligned}$$
(A1)

One introduces the function on \({\mathbb {Z}}^d\)

$$\begin{aligned} h(x) = P_x[X_{T_U} = z],\quad \hbox {for }x \in {\mathbb {Z}}^d. \end{aligned}$$

It is positive and harmonic in \(U \supseteq B(0,KL)\). When \(K \ge c\), it follows from the gradient control in Theorem 1.7.1, on p. 42 of [9], and the Harnack inequality in Theorem 1.7.2, on p. 42 of [9], that for \(x \in D \cup \partial D\), where \(D = B(0,2L)\),

(A2)

(using chaining in the last step).

Noting that \(T_D\) happens before \(T_U\), we find that by the strong Markov property

$$\begin{aligned} P_y[T_U < \widetilde{H}_A, X_{T_U} = z] = E_y\big [T_D < \widetilde{H}_A, P_{X_{T_D}} [T_U < H_A, X_{T_U} = z]\big ]. \end{aligned}$$
(A3)

Now, for \(x \in \partial D\) we have

$$\begin{aligned}&P_x [T_U < H_A, X_{T_U} = z] = h(x) - P_x[H_A < {T_U}, X_{T_U} = z] \nonumber \\&\qquad = h(x) - P_x[H_A + T_D \circ \theta _{H_A} < T_U, X_{T_U} = z] \nonumber \\&\quad \mathop {=}\limits ^\mathrm{strong\;Markov} h(x) - E_x[H_A + T_D \circ \theta _{H_A} < T_U, h(X_{T_D} \circ \theta _{H_A})] \nonumber \\&\quad = h(x) - E_x[H_A < T_U, h(X_{T_D} \circ \theta _{H_A})]. \end{aligned}$$
(A4)

As a result of (A2) we see that

(A5)

In addition, it follows by (A4) that for \(x \in \partial D\)

$$\begin{aligned}&P_x[T_U < H_A, X_{T_U}= z] \nonumber \\&\quad = h(0) (P_x[T_U < H_A] + \varphi (x) - E_x[H_A < T_U, \varphi (X_{T_D} \circ \theta _{H_A})]). \end{aligned}$$
(A6)

Further, we note that for \(x \in \partial D\)

$$\begin{aligned} P_x[T_U < H_A] \ge P_x[H_{B(0,L)} = \infty ] \ge c, \end{aligned}$$
(A7)

and setting for \(x \in \partial D\)

$$\begin{aligned} \widetilde{ \varphi }(x) = \varphi (x) / P_x[T_U < H_A], \; \hbox {we have} \; \sup \limits _{\partial D} |\widetilde{\varphi }| \le c/K. \end{aligned}$$
(A8)

As a result, we obtain that for \(x \in \partial D\)

$$\begin{aligned} P_x[T_U < H_A, X_{T_U}= z] = h(0) \, P_x[T_U < H_A] \big (1 + \gamma (x)\big ), \end{aligned}$$
(A9)

where we have set

(A10)

Coming back to (A3) we obtain (with \(X_{T_D}\) playing the role of x in (A9)) that

(A11)

where we note that when \(e_{A,U}(y) = P_y [T_U < \widetilde{H}_A] > 0\), then \(e_A(y) = P_y[\widetilde{H}_A = \infty ] > 0\) (because \(e_{A,U}(y) \le e_{A,B(0,KL)}(y)\) and (2.16)), and the ratio above is understood as 1 if \(e_A(y)\) vanishes. We thus see that the ratio in the last line of (A11) lies between 1 and \(1 + \rho _{A,B(0,KL)} \le (1 - \frac{c}{K^{d-2}})^{-1}_+\), by (2.18) of Lemma 2.2 and (2.8).

Thus, looking at the last line of (A11), we see that when \(K \ge c\),

$$\begin{aligned} P_y[T_U < \widetilde{H}_A, X_{T_U} = z] = e_A(y) \,P_0[X_{T_U} = z] (1 + \psi ) \; \hbox {with} \; |\psi | \le c'/K, \end{aligned}$$

i.e. (A1) holds and this proves Lemma 2.3. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sznitman, AS. Disconnection, random walks, and random interlacements. Probab. Theory Relat. Fields 167, 1–44 (2017). https://doi.org/10.1007/s00440-015-0676-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-015-0676-y

Mathematics Subject Classification

Navigation