Skip to main content
Log in

Some Properties of the Potential-to-Ground State Map in Quantum Mechanics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze the map from potentials to the ground state in static many-body quantum mechanics. We first prove that the space of binding potentials is path-connected. Then we show that the map is locally weak–strong continuous and that its differential is compact. In particular, this implies the ill-posedness of the Kohn–Sham inverse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Let us recall [50] that

    $$\begin{aligned}&L^p+L^{\infty }_{\epsilon }:=\left\{ f \in (L^p+L^{\infty })(\mathbb {R}^d,\mathbb {R}) \, \bigr \vert \,\forall \epsilon > 0, \exists g_{\epsilon }, h_{\epsilon }, \,f= g_{\epsilon } + h_{\epsilon }, \left| \! \left| h_{\epsilon } \right| \! \right| _{L^{\infty }} \leqslant \epsilon , g_{\epsilon }\in L^p \right\} . \end{aligned}$$
  2. Elements v of \(\mathcal {V}^{(0)}_{N,\text {meta}} \backslash \mathcal {V}_{N,\partial }^{(0)}\) satisfy \({E^{(0)}_N(v) = \Sigma _N(v)}\), here is an example. Take \(N=1\), \(d \geqslant 5\), \(\Psi (x) = c(1+x^2)^{1-\frac{d}{2}}\) where c normalizes \(\Psi \). We have \(-\Delta \Psi + v \Psi = 0\) with \(v(x) = - d(d-2) (1+x^2)^{-2} \in L^{d/2} \cap L^{\infty }\). We know that \(\Psi \) is the ground state since it is strictly positive everywhere. Hence \(E^{(0)}_N(v) = \Sigma _N(v) = 0\).

References

  1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications, vol. 75. Springer, New York (2012)

    MATH  Google Scholar 

  2. Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations. Princeton University Press, Princeton (1982)

    MATH  Google Scholar 

  3. Bach, V., Delle Site, L.: On some open problems in many-electron theory. In: Bach, V., Delle Site, L. (eds.) Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies, pp. 413–417. Springer, New York (2014)

    Chapter  Google Scholar 

  4. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)

    Google Scholar 

  5. Courant, R., Hilbert, D.: Methods of Mathematical Physics: Partial Differential Equations. Wiley, New York (2008)

    MATH  Google Scholar 

  6. Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. 106, 93–100 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engl, H.W., Kunisch, K., Neubauer, A.: Convergence rates for Tikhonov regularisation of non-linear ill-posed problems. Inverse Probl. 5, 523 (1989)

    Article  MATH  Google Scholar 

  8. Feynman, R.P.: Forces in molecules. Phys. Rev. 56, 340 (1939)

    Article  ADS  MATH  Google Scholar 

  9. Garrigue, L.: Unique continuation for many-body Schrödinger operators and the Hohenberg–Kohn theorem. Math. Phys. Anal. Geom. 21, 27 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garrigue, L.: Hohenberg–Kohn theorems for interactions, spin and temperature. J. Stat. Phys. (2019)

  11. Garrigue, L.: Unique continuation for many-body Schrödinger operators and the Hohenberg–Kohn theorem. II. The Pauli Hamiltonian, Doc. Math. (2020)

  12. Garrigue, L.: Building Kohn–Sham potentials for ground and excited states. arXiv e-prints arXiv:2101.01127 (2021)

  13. Gaudoin, R., Burke, K.: Lack of Hohenberg–Kohn theorem for excited states. Phys. Rev. Lett. 93, 173001 (2004)

    Article  ADS  Google Scholar 

  14. Güttinger, P.: The behavior of atoms in a rotating magnetic field. Z. Phys. 73, 169–184 (1932)

    Article  ADS  Google Scholar 

  15. Hadamard, J.: Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, vol. 220. Paris Russian translation (1932)

  16. Hadamard, J.: La théorie des équations aux dérivées partielles, Éditions scientifiques (1964)

  17. Hainzl, C., Lewin, M., Séré, É.: Self-consistent solution for the polarized vacuum in a no-photon QED model. J. Phys. A 38, 4483–4499 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Harriman, J.E.: Orthonormal orbitals for the representation of an arbitrary density. Phys. Rev. A 24, 680–682 (1981)

    Article  ADS  Google Scholar 

  19. Hasanoğlu, A.H., Romanov, V.G.: Introduction to Inverse Problems for Differential Equations. Springer, New York (2017)

    Book  MATH  Google Scholar 

  20. Hellman, H.: Einführung in die quantenchemie, vol. 285. Franz Deuticke, Leipzig (1937)

    Google Scholar 

  21. Hirschfelder, J.O.: Formal Rayleigh–Schrödinger perturbation theory for both degenerate and non-degenerate energy states. Int. J. Quantum Chem. 3, 731–748 (1969)

    Article  ADS  Google Scholar 

  22. Hislop, P.: Exponential decay of two-body eigenfunctions: a review. In: Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), vol. 4, pp. 265–288 (2000)

  23. Hohage, T.: Lecture Notes on Inverse Problems (2002)

  24. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  25. Hunziker, W.: On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta 39, 451–462 (1966)

    MathSciNet  MATH  Google Scholar 

  26. Ismail, M.E., Zhang, R.: On the Hellmann–Feynman theorem and the variation of zeros of certain special functions. Adv. Appl. Math. 9, 439–446 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121, 463–494 (1985) (With an appendix by E. M. Stein)

  28. Kato, T.: On the convergence of the perturbation method. Prog. Theor. Phys. 5, 207–212 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  29. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, New York (1995)

    Book  MATH  Google Scholar 

  30. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 2(140), A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  31. Lampart, J.: A remark on the attainable set of the Schrödinger equation. Evol. Equ. Control Theory (2020)

  32. Lang, S.: Differential Manifolds, vol. 212. Springer, New York (1972)

    MATH  Google Scholar 

  33. Lewin, M.: A mountain pass for reacting molecules. Ann. Henri Poincaré 5, 477–521 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Lewin, M.: Describing lack of compactness in Sobolev spaces. Lecture-taken from unpublished lecture notes "Variational Methods in Quantum Mechanics" written for a course delivered at the University of Cergy–Pontoise in 2010 (2010)

  35. Lewin, M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lewin, M.: Théorie spectrale & mécanique quantique. Cours de l’École polytechnique (2018)

  37. Lieb, E.H.: Density functionals for Coulomb systems. Int. J. Quantum Chem. 24, 243–277 (1983)

    Article  Google Scholar 

  38. Lieb, E.H.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lieb, E.H.: The Number of Bound States of One-Body Schrödinger Operators and the Weyl Problem, in The Stability of Matter: From Atoms to Stars, pp. 241–252. Springer, New York (1997)

    Google Scholar 

  40. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  41. Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–149 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case I. Rev. Mat. Iberoamericana 1, 145–201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case II. Rev. Mat. Iberoamericana 1, 45–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Perdew, J.P., Parr, R.G., Levy, M., Balduz, J.L., Jr.: Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  47. Pflaum, M.J.: The geometry of classical and quantum fields (2019)

  48. Ray, W.O., Walker, A.M.: Mapping theorems for Gateaux differentiable and accretive operators. Nonlinear Anal. Theor. 6, 423–433 (1982)

    Article  MATH  Google Scholar 

  49. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  50. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  51. Rozenbljum, G.: Distribution of the discrete spectrum of singular differential operators. Soviet Math. Doki. 202, 1012–1015 (1972)

    MathSciNet  Google Scholar 

  52. Schock, E.: Non-linear ill-posed equations: counter-examples. Inverse Probl. 18, 715–717 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Simon, B.: Trace Ideals and Their Applications. London Mathematical Society Lecture Note Series, vol. 35. Cambridge University Press, Cambridge (1979)

    MATH  Google Scholar 

  54. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7, 447–526 (1982)

    Article  MATH  Google Scholar 

  55. Simon, B.: A Comprehensive Course in Analysis, Part 4: Operator Theory. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  56. Souriau, J.-M.: Structure of Dynamical Systems: A Symplectic View of Physics, vol. 149. Springer, New York (2012)

    Google Scholar 

  57. Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4th edn. Springer, New York (2008)

    MATH  Google Scholar 

  58. Teufel, S.: Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics, vol. 1821. Springer, Berlin (2003)

    MATH  Google Scholar 

  59. Van Winter, C.: Theory of finite systems of particles. I. The Green function. Mat.-Fys. Skr. Danske Vid. Selsk. 2 (1964)

  60. Weinberg, S.: The Quantum Theory of Fields, vol. I. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  61. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. I: Fixed-Point Theorems, vol. 1. Springer, New York (1985)

    MATH  Google Scholar 

  62. Zeidler, E.: Nonlinear Functional Analysis and Its Applications IV, Applications to Mathematical Physics. Springer, New York (2013)

    Google Scholar 

  63. Zhislin, G.M.: A study of the spectrum of the Schrödinger operator for a system of several particles. Trudy Moskov. Mat. Obšč. 9, 81–120 (1960)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I warmly thank Mathieu Lewin, my PhD director, for having advised me during this work. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement MDFT No 725528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Garrigue.

Additional information

Communicated by A. Giuliani

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Basic Inequalities on Potentials

We recall here in LemmaA.1 several well-known facts about potentials.

Lemma A.1

Take \(v,w \in (L^p+L^{\infty })(\mathbb {R}^d)\).

  1. (i)

    Taking p as in (1), we have

    (37)
  2. (ii)

    Let \(\mathcal {C}\subset \mathbb {C}\), be a contour in the complex plane which is such that \({{\,\mathrm{dist}\,}}\left( z,\sigma (H_N(v)) \right) \geqslant \eta > 0\) uniformly in \(z \in \mathcal {C}\). Let p be as in (1), then the operators

    $$\begin{aligned} \left( -\Delta +1 \right) ^{-\frac{1}{2}} \big ( H_N-z \big ) \left( -\Delta +1 \right) ^{-\frac{1}{2}}, \,\,\,\,\,\,\,\,\,\left( -\Delta +1 \right) ^{\frac{1}{2}} \big ( H_N-z \big )^{-1}\left( -\Delta +1 \right) ^{\frac{1}{2}} \end{aligned}$$

    are uniformly bounded in \(z \in \mathcal {C}\).

  3. (iii)

    Let \(v \in \mathcal {V}_N^{(0)}\), and p as in (1). For \(u \in L^p+L^{\infty }\) such that \( \left| \! \left| u \right| \! \right| _{L^p+L^{\infty }} \) is small enough, we have \(v+u \in \mathcal {V}_N^{(0)}\).

Proof

(i) \(\bullet \)  If p is as in (1), we have

where we used that \( \left| \! \left| (-\Delta _i)^{\frac{1}{2}} (-\Delta _{\mathbb {R}^{dN}} +1)^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2} =1\).

\(\bullet \)  Let us write \(v = v_p + v_{\infty }\). We have

$$\begin{aligned}&\left| \! \left| \left( -\Delta +1 \right) ^{-\frac{1}{2}}v\left( -\Delta +1 \right) ^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2} \nonumber \\&\quad \leqslant \left| \! \left| \left( -\Delta +1 \right) ^{-\frac{1}{2}}v_p\left( -\Delta +1 \right) ^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2} \nonumber \\&\quad \quad \quad \quad \quad + \left| \! \left| \left( -\Delta +1 \right) ^{-\frac{1}{2}}v_{\infty }\left( -\Delta +1 \right) ^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2}\nonumber \\&\quad \leqslant \left| \! \left| \left( -\Delta +1 \right) ^{-\frac{1}{2}}v_p\left( -\Delta +1 \right) ^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2} + \left| \! \left| v_{\infty } \right| \! \right| _{L^{\infty }} \nonumber \\&\quad \leqslant \left| \! \left| \sqrt{\left| v_p\right| } \left( -\Delta +1 \right) ^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2}^2 + \left| \! \left| v_{\infty } \right| \! \right| _{L^{\infty }} . \end{aligned}$$
(38)

In the last inequality, we used that

$$\begin{aligned} \left( -\Delta +1 \right) ^{-\frac{1}{2}} v_p \left( -\Delta +1 \right) ^{-\frac{1}{2}} = \left( -\Delta +1 \right) ^{-\frac{1}{2}} \sqrt{\left| v_p\right| } {{\,\mathrm{sgn}\,}}(v_p) \sqrt{\left| v_p\right| }\left( -\Delta +1 \right) ^{-\frac{1}{2}}, \end{aligned}$$

where \({{\,\mathrm{sgn}\,}}(v)\) is equal to 1 if \(v > 0\), \(-1\) if \(v <0\) and 0 if \(v =0\), it satisfies \( \left| \! \left| {{\,\mathrm{sgn}\,}}(v) \right| \! \right| _{L^2 \rightarrow L^2} \leqslant 1\), hence

$$\begin{aligned} \left| \! \left| \left( -\Delta +1 \right) ^{-\frac{1}{2}} v_p \left( -\Delta +1 \right) ^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2} \leqslant \left| \! \left| \sqrt{\left| v_p\right| } \left( -\Delta +1 \right) ^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2}^2. \end{aligned}$$

As for the first term in (38), for \(d \geqslant 3\), with \(p = d/2\) we have

$$\begin{aligned} \left| \! \left| \sqrt{\left| v_p\right| } \left( -\Delta +1 \right) ^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2}&\leqslant \left| \! \left| \sqrt{\left| v_p\right| } (-\Delta )^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2} \leqslant c_{d} \left| \! \left| \sqrt{\left| v_p\right| } \right| \! \right| _{L^{2p}} \\&= c_{d} \sqrt{ \left| \! \left| v_p \right| \! \right| _{L^{p}} }, \end{aligned}$$

where we used the Hardy–Littlewood–Sobolev inequality [40, Theorem 4.3] in the last inequality. For \(d \in \left\{ 1,2 \right\} \), we can use the Kato–Seiler–Simon inequality [53, Theorem 4.1] to get

$$\begin{aligned} \left| \! \left| \sqrt{\left| v_p\right| } \left( -\Delta +1 \right) ^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2}&\leqslant \left| \! \left| \sqrt{\left| v_p\right| } \left( -\Delta +1 \right) ^{-\frac{1}{2}} \right| \! \right| _{\mathfrak {S}_{2p}} \\&\leqslant (2\pi )^{-d/(2p)} \left| \! \left| \sqrt{\left| v_p\right| } \right| \! \right| _{L^{2p}} \left| \! \left| \big ( \left| x\right| ^2+1 \big )^{-\frac{1}{2}} \right| \! \right| _{L^{2p}} \\&\leqslant c_{d,p} \sqrt{ \left| \! \left| v_p \right| \! \right| _{L^{p}} }. \end{aligned}$$

(ii) Take \(c \geqslant 0\) and let us define . We remark that

$$\begin{aligned} H + c = (-\Delta +c)^{\frac{1}{2}} \left( 1+ (-\Delta +c)^{-\frac{1}{2}} A (-\Delta +c)^{-\frac{1}{2}} \right) (-\Delta +c)^{\frac{1}{2}}, \end{aligned}$$

hence we only need to show that \( \left| \! \left| (-\Delta +c)^{-\frac{1}{2}} A (-\Delta +c)^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2} <1\). For instance we will show that

$$\begin{aligned} \left| \! \left| (-\Delta _{\mathbb {R}^d} + c)^{-\frac{1}{2}} v (-\Delta _{\mathbb {R}^d} + c)^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2} \leqslant \left| \! \left| \sqrt{\left| v\right| } (-\Delta _{\mathbb {R}^d} + c)^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2}^2 \end{aligned}$$

is as small as we want. For any \(\epsilon > 0\), there exists \(c_{\epsilon } \geqslant 0\) such that \(\left| v\right| \leqslant \epsilon (-\Delta ) + c_{\epsilon }\) in the sense of forms, hence for all \(u \in \mathcal {C}^{\infty }\), we have

$$\begin{aligned} \left| \! \left| \sqrt{\left| v\right| } (-\Delta + c)^{-\frac{1}{2}} u \right| \! \right| _{L^2}^2&\leqslant \epsilon \left| \! \left| (-\Delta )^{\frac{1}{2}} (-\Delta + c)^{-\frac{1}{2}} u \right| \! \right| _{L^2}^2 + c_{\epsilon } \left| \! \left| (-\Delta + c)^{-\frac{1}{2}} u \right| \! \right| _{L^2}^2 \\&\leqslant \left( \epsilon + \frac{c_{\epsilon }}{c} \right) \left| \! \left| u \right| \! \right| _{L^2}^2. \end{aligned}$$

We can first choose \(\epsilon \) small and then choose c large so that the quantity \( \left| \! \left| \sqrt{\left| v\right| } (-\Delta + c)^{-\frac{1}{2}} \right| \! \right| _{L^2 \rightarrow L^2}\) is arbitrarily small.

(iii) The statement follows from the resolvent formula

and Cauchy’s formula

see for instance [36, 50]. \(\quad \square \)

Appendix B: Weak–Strong Continuity and Compactness

We recall here relations between weak–strong continuity and compactness. Following [23, Definition 7.6], we say that a map is compact if it maps bounded sets into relatively compact sets. The link between ill-posedness of a problem and its linearization can be involved, see for instance [52] and [7, Appendix]. We start by considering standard results, and adapt them to the case when the image space is an embedded submanifold.

Lemma B.1

Let X and Y be Banach spaces, \(U \subset X\) an open set, a closed embedded submanifold of Y, and a map \(f : U \rightarrow M\).

  1. (i)

    If f is compact, continuous and differentiable on U, then \(\mathrm{d}_x f\) is compact for any \(x \in U\).

  2. (ii)

    If \(U = X\) is the dual of a Banach space, and if f is weak–strong continuous, then f is compact.

  3. (iii)

    If f is compact and M is infinite-dimensional, then f(X) is a countable union of compact sets, and f(X) has empty interior.

  4. (iv)

    If f is compact and X is infinite-dimensional, then \(f^{-1}\) is discontinuous.

Proof

The only difference in the proof, compared to the case \(M=Y\), is (i).

  1. (i)

    In the case \(M = Y\), this is proved in [23]. We apply it to \(\iota _{M \rightarrow Y} \circ f : U \rightarrow Y\) and get that \(\mathrm{d}_x \left( \iota _{M \rightarrow Y} \circ f \right) \left( X \cap \left\{ \left| \! \left| \cdot \right| \! \right| _{L^2 \rightarrow L^2} \leqslant 1 \right\} \right) = \iota _{\mathrm{T}_{f(x)} M \rightarrow Y} \circ \left( \mathrm{d}_x f \right) \left( X \cap \left\{ \left| \! \left| \cdot \right| \! \right| _{L^2 \rightarrow L^2} \leqslant 1 \right\} \right) \) is compact. A map is proper if preimages of relatively compact open sets are relatively compact open sets [56, Definition 16.26]. One can prove that for a Banach space F and a closed subset \(E \subset F\), the inclusion map is proper. Since \(\iota _{\mathrm{T}_{f(x)} M \rightarrow Y}\) is proper, then \(\left( \mathrm{d}_x f \right) \left( X \cap \left\{ \left| \! \left| \cdot \right| \! \right| _{L^2 \rightarrow L^2} \leqslant 1 \right\} \right) \) is relatively compact. We remark that we only used that is an embedded submanifold of Y, we did not use the closed condition.

  2. (ii)

    Let \(G \subset B_0(r) \subset X\) be a bounded set and \(x_n \in G\) a sequence. By Banach–Alaoglu’s theorem, \(x_n \rightharpoonup x\) for some \(x \in B_0(r)\) and up to a subsequence. By weak–strong continuity of f, \(f(x_n) \rightarrow f(x)\) strongly.

  3. (iii)

    We define the sets \(X_r :=X \cap \left\{ x \in X \, \bigr \vert \, \left| \! \left| x \right| \! \right| _{X} \leqslant r \right\} \), for \(r \geqslant 0\). Since f is compact, then the \(\overline{f(X_r)}\)’s are compact and thus have empty interiors by Riesz’s theorem [4, Theorem 6.5], which applies in our case because M is locally a normed vector space. We have

    $$\begin{aligned} f(X) = \cup _{r\in \mathbb {N}} f(X_r) \subset \cup _{r\in \mathbb {N}} \overline{f(X_r)}. \end{aligned}$$

    Finally, by Baire’s theorem [4, Theorem 2.1] f(X) has empty interior. We recall that a closed subset of a compact space is compact.

  4. (iv)

    Let \(B \subset X\) be a ball, f(B) is relatively compact. Assuming that \(f^{-1}\) is continuous, \(f^{-1}\left( f(B) \right) \supset B\), is also relatively compact, and hence B as well. But this contradicts [4, Theorem 6.5]. The inverse \(f^{-1}\) is thus discontinuous.

\(\square \)

Here is a summary of the relations between compactness and weak–strong continuity for a map and its differential.

figure a

We also remark that \(\mathrm{d}_x f\) weak–strong continuous for any \(x \in U\) does not imply that f is weak–strong continuous, a simple counterexample is \(L^2(\mathbb {R}^n) \ni x \mapsto \left| \! \left| x \right| \! \right| _{L^2}^2\), and this is also the case for \(v \mapsto \Psi (v)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrigue, L. Some Properties of the Potential-to-Ground State Map in Quantum Mechanics. Commun. Math. Phys. 386, 1803–1844 (2021). https://doi.org/10.1007/s00220-021-04140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04140-9

Navigation