Skip to main content

Generalized Anti-Wick Quantum States

  • Chapter
  • First Online:
Landscapes of Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Density operators are positive semidefinite operators with trace one representing the mixed states of quantum mechanics. The purpose of this contribution is to define and study a subclass of density operators on \(L^{2}(\mathbb {R}^{n})\), which we call Toeplitz density operators. They correspond to quantum states obtained from a fixed function (“window”) by position-momentum translations, and reduce in the simplest case to the anti-Wick operators considered long ago by Berezin and extensively studied by Cordero and others. The rigorous study of Toeplitz operators requires the use of classes of functional spaces defined by Feichtinger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Bastiaans, Wigner distribution function and its application to first-order optics, J. Opt. Soc. Am.69, 1710–1716 (1979)

    Article  Google Scholar 

  2. F.A. Berezin, Wick and anti-Wick operator symbols, Mathematics of the USSR-Sbornik, 15(4), 577 (1971); Mat. Sb. (N.S.) 86(128), 578–610 (1971) (Russian)

    Google Scholar 

  3. P. Boggiatto and E. Cordero, Anti-Wick quantization with symbols in L p spaces, Proc. Amer. Math. Soc.130(9), 2679–2685 (2002)

    Article  MathSciNet  Google Scholar 

  4. P. Boggiatto and E. Cordero, Anti-Wick quantization of tempered distributions. In Progress in Analysis: (In 2 Volumes), pp. 655–662 (2003)

    Google Scholar 

  5. P. Boggiatto, E. Cordero, and K. Gröchenig, Generalized anti-Wick operators with symbols in distributional Sobolev spaces, Integr. Equat. Oper. Th.48(4), 427–442 (2004)

    Article  MathSciNet  Google Scholar 

  6. L. Cohen, Generalized phase-space distribution functions, J. Math. Phys.7, 781–786 (1966)

    Article  MathSciNet  Google Scholar 

  7. L. Cohen, Time Frequency Analysis, Vol. 778. Prentice hall, 1995

    Google Scholar 

  8. E. Cordero and K. Gröchenig, Time-Frequency analysis of localization operators, J. Funct. Anal.205, 107–131 (2003)

    Article  MathSciNet  Google Scholar 

  9. E. Cordero and K. Gröchenig, Necessary conditions for Schatten Class Localization Operators, Proc. Amer. Math. Soc.133(12), 3573–3579 (2005)

    Article  MathSciNet  Google Scholar 

  10. E. Cordero and L. Rodino, Wick calculus: a time-frequency approach, Osaka J. Math.42(1), 43–63 (2005)

    MathSciNet  MATH  Google Scholar 

  11. J. Du and M.W. Wong, A trace formula for Weyl transforms, Approx. Theory. Appl. (N.S.) 16(1), 41–45 (2000)

    Google Scholar 

  12. M. Engliš, An excursion into Berezin–Toeplitz quantization and related topics, Quantization, PDEs,and Geometry, 69–115, Birkhäuser, Cham, 2016

    Google Scholar 

  13. M. Faulhuber, M.A. de Gosson, D. Rottensteiner, Gaussian Distributions and Phase Space Weyl–Heisenberg Frames, Appl. Comput. Harmon. Anal.48, 374–394 (2020)

    Article  MathSciNet  Google Scholar 

  14. H.G. Feichtinger, On a new Segal algebra, Monatsh. Math. 92(4), 269–289 (1981)

    Article  MathSciNet  Google Scholar 

  15. H.G. Feichtinger, Modulation spaces on locally compact abelian groups. Universität Wien. Mathematisches Institut. (1983)

    Google Scholar 

  16. H.G. Feichtinger, Modulation spaces: looking back and ahead, Sampling Theory in Signal and Image Processing 5(2), 109 (2006)

    Google Scholar 

  17. G.B. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, NJ, 1989

    Book  Google Scholar 

  18. M. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Birkhäuser, Basel, 2011

    Google Scholar 

  19. M. de Gosson, Introduction to Born–Jordan Quantization: Theory and applications, Springer–Verlag, series Fundamental Theories of Physics, 2016

    Google Scholar 

  20. M. de Gosson, The Wigner Transform, World Scientific Publishing Company, 2017

    Book  Google Scholar 

  21. M. de Gosson, Quantum harmonic analysis of the density matrix, Quanta7(1), 74–110 (2018)

    Article  MathSciNet  Google Scholar 

  22. K. Gröchenig, An uncertainty principle related to the Poisson summation formula, Stud. Math. 1(121), 87–104 (1996)

    Article  MathSciNet  Google Scholar 

  23. K. Gröchenig, Foundations of time-frequency analysis, Springer Science & Business Media; 2001

    Google Scholar 

  24. K. Gröchenig and J. Toft, Isomorphism properties of Toeplitz operators and pseudo-differential operators between modulation spaces, J. Anal. Math.114(1), 255–283 (2011)

    Article  MathSciNet  Google Scholar 

  25. M.S. Jakobsen, On a (no longer) new Segal algebra: a review of the Feichtinger algebra, J. Fourier Anal. Appl.24 (6), 1579–1660 (2018)

    Article  MathSciNet  Google Scholar 

  26. R.G. Littlejohn, The semiclassical evolution of wave packets, Phys. Reps. 138(4–5), 193–291 (1986)

    Google Scholar 

  27. F. Luef and E. Skrettingland, Convolutions for localization operators, J. Math. Pures Appl. 118, 288–316 (2018)

    Article  MathSciNet  Google Scholar 

  28. M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, (1987) [original Russian edition in Nauka, Moskva (1978)]

    Google Scholar 

  29. J. Toft, Continuity and Schatten Properties for Toeplitz Operators on Modulation Spaces, In: Toft J. (eds) Modern Trends in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol 172. Birkhäuser Basel, 2006

    Google Scholar 

Download references

Acknowledgements

This work was written while the author was holding the Giovanni Prodi visiting chair at the Julius-Maximilians-Universität Würzburg during the summer semester 2019. It is my pleasure to thank the referee for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice de Gosson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gosson, M.d. (2020). Generalized Anti-Wick Quantum States. In: Boggiatto, P., et al. Landscapes of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-56005-8_7

Download citation

Publish with us

Policies and ethics