Skip to main content
Log in

Lyapunov Functions, Identities and the Cauchy Problem for the Hele–Shaw Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This article is devoted to the study of the Hele–Shaw equation. We introduce an approach inspired by the water-wave theory. Starting from a reduction to the boundary, introducing the Dirichlet to Neumann operator and exploiting various cancellations, we exhibit parabolic evolution equations for the horizontal and vertical traces of the velocity on the free surface. This allows to quasi-linearize the equations in a natural way. By combining these exact identities with convexity inequalities, we prove the existence of hidden Lyapunov functions of different natures. We also deduce from these identities and previous works on the water wave problem a simple proof of the well-posedness of the Cauchy problem. The analysis contains two side results of independent interest. Firstly, we give a principle to derive estimates for the modulus of continuity of a PDE under general assumptions on the flow. Secondly we prove and give applications of a convexity inequality for the Dirichlet to Neumann operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We do not need to (and in fact we cannot) apply directly the conclusion of Theorem 2.12 to infer that \(1-B(t,x)\ge {\underline{a}}\) for all time t. This is because we do not have a similar result for an iterative scheme converging to the solution.

References

  1. Alazard, T., Burq, N., Zuily, C.: On the water-wave equations with surface tension. Duke Math. J. 158(3), 413–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alazard, T., Burq, N., Zuily, C.: The water-wave equations: from Zakharov to Euler. In: Cicognani, M., Colombini, F., Del Santo, D. (eds.) Studies in Phase Space Analysis with Applications to PDEs, volume 84 of Progres in Nonlinear Differential Equations Applications, pp. 1–20. Birkhäuser/Springer, New York (2013)

    MATH  Google Scholar 

  3. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Alazard, T., Lazar, O.: Paralinearization of the Muskat equation and application to the Cauchy problem. Arch. Ration. Mech. Anal. 237(2), 545–583 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alazard, T., Métivier, G.: Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves. Commun. Partial Differ. Equ. 34(10–12), 1632–1704 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alinhac, S.: Paracomposition et opérateurs paradifférentiels. Commun. Partial Differ. Equ. 11(1), 87–121 (1986)

    Article  MATH  Google Scholar 

  7. Antoine, X., Barucq, H., Bendali, A.: Bayliss–Turkel-like radiation conditions on surfaces of arbitrary shape. J. Math. Anal. Appl. 229(1), 184–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bona, J.L., Lannes, D., Saut, J.-C.: Asymptotic models for internal waves. J. Math. Pures Appl. (9) 89(6), 538–566 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14(2), 209–246 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cameron, S.: Global well-posedness for the two-dimensional Muskat problem with slope less than 1. Anal. PDE 12(4), 997–1022 (2019). https://doi.org/10.2140/apde.2019.12.997

    Article  MathSciNet  MATH  Google Scholar 

  11. Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F.: Breakdown of smoothness for the Muskat problem. Arch. Ration. Mech. Anal. 208(3), 805–909 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F.: Splash singularities for the one-phase Muskat problem in stable regimes. Arch. Ration. Mech. Anal. 222(1), 213–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F., López-Fernández, M.: Rayleigh–Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. (2) 175(2), 909–948 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang-Lara, H.A., Guillen, N., Schwab, R.W.: Some free boundary problems recast as nonlocal parabolic equations. arXiv:1807.02714

  15. Chen, X.: The Hele-Shaw problem and area-preserving curve-shortening motions. Arch. Ration. Mech. Anal. 123(2), 117–151 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheng, C.H.A., Granero-Belinchón, R., Shkoller, S.: Well-posedness of the Muskat problem with \(H^2\) initial data. Adv. Math. 286, 32–104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Constantin, P., Córdoba, D., Gancedo, F., Rodríguez-Piazza, L., Strain, R.M.: On the Muskat problem: global in time results in 2D and 3D. Am. J. Math. 138(6), 1455–1494 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Constantin, P., Gancedo, F., Shvydkoy, R., Vicol, V.: Global regularity for 2D Muskat equations with finite slope. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(4), 1041–1074 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Constantin, P., Ignatova, M.: Critical SQG in bounded domains. Ann. PDE 2(2), Art. 8, 42 pp. (2016)

  20. Constantin, P., Ignatova, M.: Remarks on the fractional Laplacian with Dirichlet boundary conditions and applications. Int. Math. Res. Not. IMRN 6, 1653–1673 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Constantin, P., Tarfulea, A., Vicol, V.: Long time dynamics of forced critical SQG. Commun. Math. Phys. 335(1), 93–141 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Córdoba, A., Córdoba, D.: A pointwise estimate for fractionary derivatives with applications to partial differential equations. Proc. Natl. Acad. Sci. USA 100(26), 15316–15317 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Córdoba, A., Córdoba, D., Gancedo, F.: Interface evolution: the Hele–Shaw and Muskat problems. Ann. Math. (2) 173(1), 477–542 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Córdoba, A., Martínez, Á.: A pointwise inequality for fractional Laplacians. Adv. Math. 280, 79–85 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Córdoba, D., Lazar, O.: Global well-posedness for the 2d stable muskat problem in \({H}^{3/2}\). arXiv:1803.07528

  27. Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108(1), 73–83 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Craig, W., Nicholls, D.P.: Travelling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal. 32(2), 323–359 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nazarov, A.I., Apushkinskaya, D.E.: On the boundary point principle for divergence-type equations. arXiv:1802.09636

  30. Escher, J., Simonett, G.: Classical solutions for Hele–Shaw models with surface tension. Adv. Differ. Equ. 2(4), 619–642 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Gancedo, F.: A survey for the Muskat problem and a new estimate. SeMA J. 74(1), 21–35 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Granero-Belinchón, R., Lazar, O.: Growth in the Muskat problem. Math. Model. Nat. Phenom. (2020). https://doi.org/10.1051/mmnp/2019021

  33. Günther, M., Prokert, G.: On a Hele–Shaw type domain evolution with convected surface energy density: the third-order problem. SIAM J. Math. Anal. 38(4), 1154–1185 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ning, J.: The maximum principle and the global attractor for the dissipative 2d quasi-geostrophic equations. Commun. Math. Phys. 255(1), 161–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kim, I.C.: Uniqueness and existence results on the Hele–Shaw and the Stefan problems. Arch. Ration. Mech. Anal. 168(4), 299–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Knüpfer, H., Masmoudi, N.: Darcy’s flow with prescribed contact angle: well-posedness and lubrication approximation. Arch. Ration. Mech. Anal. 218(2), 589–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  38. Matioc, B.V.: Viscous displacement in porous media: the Muskat problem in 2D Trans. Am. Math. Soc. 370(10), 7511–7556 (2018)

    Article  ADS  MATH  Google Scholar 

  39. Matioc, B.V.: The Muskat problem in 2D: equivalence of formulations, well-posedness, and regularity results. Anal. PDE 12(2), 281–332 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nazarov, A.I.: A centennial of the Zaremba–Hopf–Oleinik lemma. SIAM J. Math. Anal. 44(1), 437–453 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Prüss, J., Simonett, G.: Moving Interfaces and Quasilinear Parabolic Evolution Equations, volume 105 of Monographs in Mathematics. Birkhäuser/Springer, Cham (2016)

    Book  MATH  Google Scholar 

  42. Safonov, M.V.: Boundary estimates for positive solutions to second order elliptic equations. arXiv:0810.0522

  43. Sylvester, J., Uhlmann, G.: Inverse boundary value problems at the boundary–continuous dependence. Commun. Pure Appl. Math. 41(2), 197–219 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sijue, W.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sijue, W.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)

    Article  ADS  Google Scholar 

  47. Zaremba, S.: Sur un problème mixte relatif à l’équation de Laplace. Bull. Acad. Sci. Cracovie. Cl. Sci. Math. Nat. Ser. A 2, 313–344 (1910)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their careful readings of the manuscript. T.A. and D.S. acknowledge the support of the SingFlows project, grant ANR-18-CE40-0027 of the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Alazard.

Additional information

Communicated by A. Ionescu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alazard, T., Meunier, N. & Smets, D. Lyapunov Functions, Identities and the Cauchy Problem for the Hele–Shaw Equation. Commun. Math. Phys. 377, 1421–1459 (2020). https://doi.org/10.1007/s00220-020-03761-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03761-w

Navigation