Skip to main content
Log in

The Regularity Properties and Blow-up of Solutions for Nonlocal Wave Equations and Applications

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the Cauchy problem for linear and nonlinear wave equations is studied.The equation involves an abstract operator A in a Hilbert space H and a convolution term. Here, assuming sufficient smoothness on the initial data and on coefficients, the existence, uniqueness, regularity properties, and blow-up of solutions are established in terms of fractional powers of a given sectorial operator A. We obtain the regularity properties of a wide class of wave equations by choosing a space H and an operator A that appear in the field of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, M., Griebel, M.: Derivation of higher order gradient continuum models from atomistic models for crystalline solids multiscale modeling. Simul. 4, 531–62 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Bahri, A., Brezis, H.: Periodic solutions of a nonlinear wave equation. Proc. Roy. Soc. Edinburgh 85, 313–320 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arendt,W., Batty,C., Hieber,M., Neubrander,F.: Vector-valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics. 96. Birkhä user, Basel, (2001)

  4. Bona, J.L., Sachs, R.L.: Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Comm. Math. Phys. 118, 15–29 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin, A., Molinet, L.: The initial value problem for a generalized Boussinesq equation. Diff. Integral Eqns. 15, 1061–72 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Chen,G., Wang,S.: Existence and nonexistence of global solutions for the generalized IMBq equation Nonlinear Anal.—Theory Methods Appl. (1999)36, 961–80

  7. Clarkson, A., LeVeque, R.J., Saxton, R.: Solitary-wave interactions in elastic rods. Stud. Appl. Math. 75, 95–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ghisi, M., Gobbino, M., Haraux, A.: Optimal decay estimates for the general solution to a class of semi-linear dissipative hyperbolic equations. J. Eur. Math. Soc. (JEMS) 18, 1961–1982 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Godefroy, A.: Blow up of solutions of a generalized Boussinesq equation IMA. J. Appl. Math. 60, 123–38 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Duruk, N., Erbay, H.A., Erkip, A.: Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity. Nonlinearity 23, 107–118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  12. Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces, in North Holland Mathematics Studies, vol. 108. North-Holland, Amsterdam (1985)

    Google Scholar 

  13. Girardi, M., Weis, L.: Operator-valued Fourier multiplier theorems on Besov spaces. Math. Nachr. 251, 34–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, Z.: Formulations of nonlocal continuum mechanics based on a new definition of stress tensor. Acta Mech. 187, 11–27 (2006)

    Article  MATH  Google Scholar 

  15. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Levine, H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form \(Pu=-Au+F(u)\). Trans. Amer. Math. Soc. 192, 1–21 (1974)

    MathSciNet  MATH  Google Scholar 

  17. Liu,T-P., Yang,T., Yu,S-H. , Zhao, H-J.: Nonlinear Stability of Rarefaction Waves for the Boltzmann Equation, Arch. Rational Mech. Anal. 181 (2006) 333–371

  18. Linares, F.: Global existence of small solutions for a generalized Boussinesq equation. J. Differen. Equ. 106, 257–293 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Y.: Instability and blow-up of solutions to a generalized Boussinesq equation. SIAM J. Math. Anal. 26, 1527–1546 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Makhankov, V.G.: Dynamics of classical solutions (in non-integrable systems). Phys. Lett. C 35, 1–128 (1978)

    Google Scholar 

  21. Polizzotto, C.: Nonlocal elasticity and related variational principles Int. J. Solids Struct. 38, 7359–80 (2001)

    Article  MATH  Google Scholar 

  22. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  23. Pulkina, L.S.: A non local problem with integral conditions for hyperbolic equations. Electron. J. Differ. Equ. 45, 1–6 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Silling, C.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shakhmurov, V. B.: Embedding and separable differential operators in Sobolev-Lions type spaces, Math. Notes, 84(2008) (6), 906–926

  26. Shakhmurov, V. B.: Linear and nonlinear abstract differential equations with small parameters, Banach J. Math. Anal. 10 (2016)(1), 147–168

  27. Triebel, H.: Interpolation theory. Function spaces, Differential operators, North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  28. Triebel, H.: Fractals and Spectra. Birkhäuser Verlag, Related to Fourier analysis and function spaces, Basel (1997)

  29. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1975)

    MATH  Google Scholar 

  30. Wang, S., Chen, G.: Small amplitude solutions of the generalized IMBq equation. J. Math. Anal. Appl. 274, 846–866 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, S., Chen, G.: Cauchy problem of the generalized double dispersion equation, Nonlinear Anal. Theory Methods Appl. (2006 )64 159–73

  32. Wu, S.: Almost global well-posedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009)

    Article  MathSciNet  Google Scholar 

  33. Zabusky, N.J.: Nonlinear Partial Differential Equations. Academic Press, New York (1967)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veli Shakhmurov.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Data declaration

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhmurov, V., Shahmurov, R. The Regularity Properties and Blow-up of Solutions for Nonlocal Wave Equations and Applications. Results Math 77, 229 (2022). https://doi.org/10.1007/s00025-022-01752-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01752-y

Keywords

Mathematics Subject Classification

Navigation