Skip to main content
Log in

Constructive Tensor Field Theory: The \({T_{4}^{4}}\) Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We continue our constructive study of tensor field theory through the next natural model, namely the rank four tensor theory with quartic melonic interactions and propagator inverse of the Laplacian on U(1)4. This superrenormalizable tensor field theory has a power counting quite similar to ordinary \({\phi^4_3}\). We control the model via a multiscale loop vertex expansion which has to be pushed quite beyond the one of the \({T^{4}_{3}}\) model and we establish its Borel summability in the coupling constant. This paper is also a step to prepare the constructive treatment of just renormalizable models, such as the \({T^{4}_{5}}\) model with quartic melonic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambjorn J., Durhuus B., Jonsson T.: Three dimensional simplicial gravity and generalized matrix models. Mod. Phys. Lett. A. 6(12), 1133 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ambjorn, J.: Simplicial Euclidean and Lorentzian quantum gravity. In: Bishop, N.T., Muharaj, S.D. (eds.) General Relativity and Gravitation. Proceedings of the 16th International Conference. Durban, South Africa, 15–21 July 2001. World Scientific (2002). arXiv:gr-qc/0201028

  3. Ambjorn, J., et al.: Causal dynamical triangulations and the search for a theory of quantum gravity. In: The Thirteenth Marcel Grossmann Meeting. Stockholm University, Sweden, 1–7 July 2012. World Scientific, pp. 120–137 (2013). arXiv:1305.6680 [gr-qc]

  4. Abdesselam, A., Rivasseau, V.: Trees, forests and jungles: a botanical garden for cluster expansions. In: Constructive Physics, vol. 446. Lectures Notes in Physics. Springer, New York (1995)

  5. Abdesselam A., Rivasseau V.: Explicit fermionic tree expansions. Lett. Math. Phys. 44(1), 77–88 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonzom V., Delepouve T., Rivasseau V.: Enhancing non-melonic triangulations: a tensor model mixing melonic and planar maps. Nucl. Phys. B 895, 161–191 (2015) arXiv:1502.01365 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ben Geloun, J.: Asymptotic freedom of Rank 4 tensor group field theory. In: Symmetries and Groups in Contemporary Physics, vol. 11. Nankai Series in Pure, Applied Mathematics and Theoretical Physics. Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics. Tianjin, China, 20–26 August 2012. World Scientific, pp. 367–372 (2012). arXiv:1210.5490 [hep-th]

  8. Ben Geloun J.: Two and four-loop \({\beta}\)-functions of rank 4 renormalizable tensor field theories. Class. Quant. Gravity 29, 235011 (2012) arXiv:1205.5513 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ben Geloun J.:  Renormalizable  models  in  Rank \({d \geq 2}\) tensorial group field theory. Commun. 332(1), 117–188 (2014). https://doi.org/10.1007/s00220-014-2142-6 arXiv:1306.1201 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ben Geloun J., Magnen J., Rivasseau V.: Bosonic colored group field theory. Eur. Phys. J. C 70(4), 1119–1130 (2010) arXiv:0911.1719 [hep-th]

    Article  ADS  Google Scholar 

  11. Ben Geloun J., Ousmane Samary D.: 3D tensor field theory: renormalization and one-loop \({\beta}\)-functions. Ann. H. Poincaré 14(6), 1599–1642 (2012) arXiv:1201.0176 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  12. Ben Geloun J., Rivasseau V.: A enormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318(1), 69–109 (2012). https://doi.org/10.1007/s00220-012-1549-1 arXiv:1111.4997 [hep-th]

    Article  MATH  Google Scholar 

  13. Bonzom V., Gurau R., Rivasseau V.: Random tensor models in the large N limit: uncoloring the colored tensor models. Phys. Rev. D 85(8), 084037 (2012) arXiv:1202.3637 [hep-th]

    Article  ADS  Google Scholar 

  14. Ben Geloun J., Rivasseau V.: Addendum to ”A renormalizable 4-dimensional tensor field theory”. Commun. Math. Phys. 322(3), 957–965 (2013) arXiv:1209.4606 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Brydges D. C., Kennedy T.: Mayer expansions and the Hamilton-Jacobi equation. J. Stat. Phys. 48(1), 19–49 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bonzom, V., Lionni, L., Tanasa, A.: Diagrammatics of a colored SYK model and of an SYKlike tensor model, leading and next-to-leading orders. J. Math. Phys. 58(5), 052301 (2017). https://doi.org/10.1063/1.4983562. arXiv:1702.06944 [hep-th]

  17. Bonzom V.: New 1/N expansions in random tensor models. J. High Energy Phys. 2013(06), 062 (2013). https://doi.org/10.1007/JHEP06(2013)062 arXiv:1211.1657 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  18. Bonzom, V.: Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension \({d \geqslant 2}\). SIGMA 12 (July 20, 2016). Special Issue on Tensor Models, Formalism and Applications, p. 073. https://doi.org/10.3842/SIGMA.2016.073. arXiv:1603.03570 [math-ph]

  19. Boulatov D.V.: A model of three-dimensional lattice gravity. Mod. Phys. Lett. A. 7(18), 1629–1646 (1992) arXiv:hep-th/9202074

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Chmutov S.: Generalized duality for graphs on surfaces and the signed Bollobás–Riordan polynomial. J. Comb. Theory Ser. B 99(3), 617–638 (2008) arXiv:0711.3490 [math.CO]

    Article  MathSciNet  MATH  Google Scholar 

  21. Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of an SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys. (2014). arXiv:1303.6772 [hep-th]

  22. Carrozza S., Oriti D., Rivasseau V.: Renormalization of tensorial group field theories: Abelian U(1) models in four dimensions. Commun. Math. Phys. 327(2), 603–641 (2014) arXiv:1207.6734 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. David F.: A model of random surfaces with non-trivial critical behaviour. Nucl. Phys. B 257, 543–576 (1985)

    Article  ADS  Google Scholar 

  24. Di Francesco P., Ginsparg P., Zinn-Justin J.: 2D gravity and random matrices. Phys. Rep. 254, 1–133 (1995)

    Article  ADS  Google Scholar 

  25. Doplicher S., Fredenhagen K., Roberts J.E.: Spacetime quantization induced by classical gravity. Phys. Lett. B 331(1–2), 39–44 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  26. Delepouve T., Gurau R., Rivasseau V.: Universality and Borel summability of arbitrary qua-rtic tensor models. Ann. Inst. H. Poincaré Probab. Stat. 52(2), 821–848 (2014). https://doi.org/10.1214/14-AIHP655 arXiv:1403.0170 [hep-th]

    Article  ADS  MATH  Google Scholar 

  27. Disertori M. et al.: Vanishing of Beta function of non commutative \({\Phi^4_4}\) theory to all orders. Phys. Lett. B 649(1), 95–102 (2006) arXiv:hep-th/0612251

    Article  ADS  MathSciNet  Google Scholar 

  28. Disertori M., Rivasseau V.: Two- and three-loop beta function of non-commutative \({\Phi^4_4}\) theory. Eur. Phys. J. C 50, 661–671 (2006) arXiv:hep-th/0610224

    Article  ADS  MATH  Google Scholar 

  29. Delepouve T., Rivasseau V.: Constructive tensor field theory: the T 4 3 model. Commun. Math. Phys. 345(2), 477–506 (2016). https://doi.org/10.1007/s00220-016-2680-1 arXiv:1412.5091 [math-ph]

    Article  ADS  MATH  Google Scholar 

  30. Eckmann J.-P., Magnen J., Sénéor R.: Decay properties and borel summability for the Schwinger functions in \({P(\phi)_2}\) theories. Commun. Math. Phys. 39(4), 251–271 (1974)

    Article  ADS  Google Scholar 

  31. Feldman J. et al.: Bounds on completely convergent Euclidean Feynman graphs. Commun. Math. Phys. 98, 273–288 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Feldman J. et al.: A renormalizable field theory: the massive Gross-Neveu model in two dimensions. Commun. Math. Phys. 103(1), 67–103 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Ferrari, F.: The large D limit of planar diagrams (2017). arXiv:1701.01171 [hep-th]

  34. Feldman J., Osterwalder K.: The Wightman axioms and the mass gap for weakly coupled \({\phi^4_3}\) quantum field theories. Ann. Phys. 97, 80–135 (1976)

    Article  ADS  Google Scholar 

  35. Freidel L.: Group field theory: an overview. Int. J. Theor. Phys. 44, 1769 (2005) arXiv:hep-th/0505016

    Article  MathSciNet  MATH  Google Scholar 

  36. Glimm J., Jaffe A.: Positivity of the \({\phi^4_3}\) Hamiltonian. Fortschr. Phys. 21, 327 (1973)

    Article  Google Scholar 

  37. Glimm, J., Jaffe, A.: Quantum physics. A functional integral point of view, 2nd edn, pp. xxii+535. Springer, New York. ISBN: 0-387-96476-2 (1987)

  38. Glimm J., Jaffe A., Spencer T.: The Wightman axioms and particle structure in the \({P(\phi)_2}\) quantum field model. Ann. Math. 100(3), 585–632 (1973). https://doi.org/10.2307/1970959

    Article  Google Scholar 

  39. Gurau R., Krajewski T.: Analyticity results for the cumulants in a random matrix model. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 2(2), 169–228 (2015). https://doi.org/10.4171/AIHPD/17 arXiv:1409.1705 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  40. Gawedzki K., Kupiainen A.: Gross-Neveu model through convergent perturbation expansions. Commun. Math. Phys. 102(1), 1–30 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  41. Gurau R., Rivasseau V.: The 1/N expansion of colored tensor models in arbitrary dimension. Eur. Phys. Lett. 95(5), 50004 (2011) arXiv:1101.4182 [gr-qc]

    Article  ADS  Google Scholar 

  42. Gurau R., Ryan J.P.: Colored tensor models—a review. SIGMA 8(020), 78 (2011) arXiv:1109.4812 [hep-th]

    MATH  Google Scholar 

  43. Gurau R., Rivasseau V.: The  multiscale  loop  vertex  expansion. Ann. H. Poincaré 16(8), 1869–1897 (2014). https://doi.org/10.1007/s00023-014-0370-0 arXiv:1312.7226 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  44. Gross M.: Tensor models and simplicial quantum gravity in > 2−D. Nucl. Phys. B Proc. Suppl. 25(1), 144–149 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Gurau R.: Colored group field theory. Commun. Math. Phys. 304, 69–93 (2010). https://doi.org/10.1007/s00220-011-1226-9 arXiv:0907.2582 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Gurau R.: The 1/N expansion of colored tensor models. Ann. H. Poincaré 12(5), 829–847 (2010) arXiv:1011.2726 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  47. Gurau R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. H. Poincaré 13, 399–423 (2011) arXiv:1102.5759 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  48. Gurau R.: The 1/N expansion of tensor models beyond perturbation theory. Commun. Math. Phys. 330(3), 973–1019 (2013) arXiv:1304.2666 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Gurau R.: Universality for random tensors. Ann. Inst. H. Poincaré Probab. Stat. 50(4), 1474–1525 (2013). https://doi.org/10.1214/13-AIHP567 arXiv:1111.0519 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  50. Gurau, R.: Quenched equals annealed at leading order in the colored SYK model (2017). arXiv:1702.04228 [hep-th]

  51. Gurau R.: The complete 1/N expansion of a SYK-like tensor model. Nucl. Phys. B 916, 386–401 (2017). https://doi.org/10.1016/j.nuclphysb.2017.01.015 arXiv:1611.04032 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Grosse H., Wulkenhaar R.: Renormalisation of \({\phi^4}\)-theory on noncommutative \({\mathbb{R}^4}\) in the matrix base. Commun. Math. Phys. 256(2), 305–374 (2004) arXiv:hep-th/0401128

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Grosse H., Wulkenhaar R.: The beta-function in duality-covariant noncommutative \({\phi^4}\)-theory. Eur. Phys. J. C 35, 277–282 (2004) arXiv:hep-th/0402093

    Article  ADS  MATH  Google Scholar 

  54. Grosse, H., Wulkenhaar, R.: Progress in solving a noncommutative quantum field theory in four dimensions (2009). arXiv:0909.1389 [hep-th]

  55. Grosse H., Wulkenhaar R.: Self-dual noncommutative \({\phi^4}\)-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. Commun. Math. Phys. 329(3), 1069–1130 (2013). https://doi.org/10.1007/s00220-014-1906-3 arXiv:1205.0465 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Grosse, H., Wulkenhaar, R.: Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity (2014). arXiv:1406.7755 [hep-th]

  57. Grosse H., Wulkenhaar R.: On the fixed point equation of a solvable 4D QFT model. Vietnam J. Math. 44(1), 153–180 (2016) arXiv:1505.05161 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  58. Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Texts and Monographs in Physics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  59. ’t Hooft G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72(3), 461–473 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  60. Kazakov V.A.: Bilocal regularization of models of random surfaces. Phys. Lett. B 150(4), 282–284 (1985)

    Article  ADS  Google Scholar 

  61. Krajewski, T.: Group field theories. PoS QGQGS 2011.005 (2012). arXiv:1210.6257 [gr-qc]

  62. Krishnan, C., Sanyal, S., Bala Subramanian, P.N.: Quantum chaos and holographic tensor models. J. High Energy Phys. 3, 56 (2017). arXiv:1612.06330 [hep-th]

  63. Klebanov, I. R., Tarnopolsky, G.: Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models. Phys. Rev. D. 95, 046004 (2017). arXiv:1611.08915 [hep-th]

  64. Lahoche, V.: Constructive tensorial group field theory I: the \({U(1)-T^4_3}\) model (2015). arXiv:1510.05050 [hep-th]

  65. Lahoche V.: Constructive tensorial group field theory II: the \({U(1)-T^4_4}\) model (2015). arXiv:1510.05051 [hep-th]

  66. Loll R., Ambjorn J., Jurkiewicz J.: The universe from Scratch. Contemp. Phys. 47, 103–117 (2005) arXiv:hep-th/0509010

    MATH  Google Scholar 

  67. Magnen, J., et al.: Scaling behavior of three-dimensional group field theory. Class. Quant. Gravity 26(18), 185012 (2009). https://doi.org/10.1088/0264-9381/26/18/185012. arXiv:0906.5477 [hep-th]

  68. Miermont, G.: Aspects of random maps. Saint-Flour lecture notes (2014)

  69. Magnen J., Rivasseau V.: Constructive \({\phi^4}\) field theory without tears. Ann. H. Poincaré 9, 403–424 (2007) arXiv:0706.2457 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  70. Magnen J., Sénéor R.: The infinite volume limit of the \({\phi^4_3}\) model. Ann. Inst. Henri Poincaré 24(2), 95–159 (1976)

    MathSciNet  Google Scholar 

  71. Magnen J., Sénéor R.: Phase space cell expansion and Borel summability for the Euclidean \({\phi^4_3}\) theory. Commun. Math. Phys. 56(3), 237–276 (1977). https://doi.org/10.1007/BF01614211

    Article  ADS  Google Scholar 

  72. Nelson, E.: A quartic interaction in two dimensions. In: Goodman, R., Segal I. (eds.) Mathematical Theory of Elementary Particles. MIT Press, Endicott House, Dedham (1965)

  73. Ousmane Samary, D.: Beta functions of \({U(1)^d}\) gauge invariant just renormalizable tensor models. Phys. Rev. D. 88, 105003 (2013). arXiv:1303.7256 [hep-th]

  74. Ousmane Samary D., Vignes-Tourneret F.: Just renormalizable TGFT’s on \({U(1)^d}\) with gauge invariance. Commun. Math. Phys. 329(2), 545–578 (2013) arXiv:1211.2618 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  75. Regge T.: General relativity without coordinates. Il Nuovo Cimento 19(3), 558–571 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  76. Rivasseau, V.: Constructive matrix theory. J. High Energy Phys. 9, 008 (2007). arXiv:0706.1224 [hep-th]

  77. Rivasseau V.: The tensor track, III. Fortschr. Phys. 62(2), 81–107 (2012). https://doi.org/10.1002/prop.201300032 arXiv:1311.1461 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  78. Rivasseau, V.: Why are tensor field theories asymptotically free? Eur. Phys. Lett. 111(6), 60011 (2015). https://doi.org/10.1209/0295-5075/111/60011. arXiv:1507.04190 [hep-th]

  79. Rivasseau, V.: Constructive Tensor Field Theory. SIGMA 12 (Aug. 18, 2016). Special Issue on Tensor Models, Formalism and Applications, p. 085. https://doi.org/10.3842/SIGMA.2016.085. arXiv:1603.07312 [math-ph]

  80. Rivasseau V.: Loop vertex expansion for higher order interactions. Lett. Math. Phys. 108(5), 1147–1162 (2017). https://doi.org/10.1007/s11005-017-1037-9 arXiv:1702.07602 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton Series in Physics. Princeton Univ. Pr., Princeton (1991)

  82. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Revised and Enlarged Edition, vol. 1: Functionnal Analysis. Academic Press (1980)

  83. Rivasseau V., Wang Z.: How to resum Feynman graphs. Ann. H. Poincaré 15(11), 2069–2083 (2013) arXiv:1304.5913 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  84. Sasakura N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6(28), 2613 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Simon B.: The \({P(\phi)_2}\) Euclidean (Quantum) Field Theory. Princeton University Press, Princeton (1974)

    Google Scholar 

  86. Sokal A. D.: An improvement of Watson’s theorem on Borel summability. J. Math. Phys. 21(2), 261–263 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  87. Streater R.F., Wightman A.S.: PCT, Spin and Statistics, and All That. W. A. Benjamin, New York (1964)

    MATH  Google Scholar 

  88. Velo, G., Wightman, A.S. (eds.): Constructive Quantum Field Theory, vol. 25. Lecture notes in physics. The 1973 “Ettore Majorana” International School of Mathematical Physics. Springer (1973)

  89. Witten, E.: An SYK-like model without disorder (2016). arXiv:1610.09758 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Vignes-Tourneret.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivasseau, V., Vignes-Tourneret, F. Constructive Tensor Field Theory: The \({T_{4}^{4}}\) Model. Commun. Math. Phys. 366, 567–646 (2019). https://doi.org/10.1007/s00220-019-03369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03369-9

Navigation