Skip to main content
Log in

A Renormalizable 4-Dimensional Tensor Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that an integrated version of the Gurau colored tensor model supplemented with the usual Bosonic propagator on U(1)4 is renormalizable to all orders in perturbation theory. The model is of the type expected for quantization of space-time in 4D Euclidean gravity and is the first example of a renormalizable model of this kind. Its vertex and propagator are four-stranded like in 4D group field theories, but without gauge averaging on the strands. Surprisingly perhaps, the model is of the \({\phi^6}\) rather than of the \({\phi^4}\) type, since two different \({\phi^6}\)-type interactions are log-divergent, i.e. marginal in the renormalization group sense. The renormalization proof relies on a multiscale analysis. It identifies all divergent graphs through a power counting theorem. These divergent graphs have internal and external structure of a particular kind called melonic. Melonic graphs dominate the 1/N expansion of colored tensor models and generalize the planar ribbon graphs of matrix models. A new locality principle is established for this category of graphs which allows to renormalize their divergences through counterterms of the form of the bare Lagrangian interactions. The model also has an unexpected anomalous log-divergent \({(\int \phi^2)^2}\) term, which can be interpreted as the generation of a scalar matter field out of pure gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rivasseau V.: Towards Renormalizing Group Field Theory. PoS C NCFG2010, 004 (2010)

    Google Scholar 

  2. Di Francesco P., Ginsparg P.H., Zinn-Justin J.: 2-D Gravity and random matrices. Phys. Rept. 254, 1 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  3. David F.: A Model Of Random Surfaces With Nontrivial Critical Behavior. Nucl. Phys. B 257, 543 (1985)

    Article  ADS  Google Scholar 

  4. Kazakov V.A.: Bilocal regularization of models of random surfaces. Phys. Lett. B 150, 282 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  5. Brézin E., Kazakov V.A.: Exactly solvable field theories of closed strings. Phys. Lett. B 236, 144 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  6. Douglas M.R., Shenker S.H.: Strings in less than one dimension. Nucl. Phys. B 335, 635 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  7. Gross D.J., Migdal A.A.: Nonperturbative two-dimensional quantum gravity. Phys. Rev. Lett. 64, 127 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B.: Fractal structure of 2d quantum gravity. Mod. Phys. Lett. A 3, 819 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  9. David F.: Conformal field theories coupled to 2d gravity in the conformal gauge. Mod. Phys. Lett. A 3, 1651 (1988)

    Article  ADS  Google Scholar 

  10. Distler J., Kawai H.: Conformal field theory and 2d quantum gravity or who’s afraid of Joseph Liouville?. Nucl. Phys. B 321, 509 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  11. Duplantier, B.: Conformal random geometry. In: Les Houches, Session LXXXIII: Mathematical Statistical Physics, (July, 2005), Editors A. Bovier, F. Dunlop, F. den Hollander, A. van Enter, J. Dalibard, Amsterdam: Elsevier, 2006, pp. 101–217

  12. ’t Hooft G.: A Planar Diagram theory for Strong Interactions. Nucl. Phys. B 72, 461 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  13. Ambjorn J., Durhuus B., Jonsson T.: Three-Dimensional Simplicial Quantum Gravity And Generalized Matrix Models. Mod. Phys. Lett. A 6, 1133 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  14. Gross M.: Tensor models and simplicial quantum gravity in >  2-D. Nucl. Phys. Proc. Suppl. 25A, 144 (1992)

    Article  ADS  MATH  Google Scholar 

  15. Sasakura N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6, 2613 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Ambjorn J., Varsted S.: Three-dimensional simplicial quantum gravity. Nucl. Phys. B 373, 557 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  17. Sasakura N.: Canonical tensor models with local time. Int. J. Mod. Phys. A 27, 1250020 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  18. Sasakura N.: Tensor models and hierarchy of n-ary algebras. Int. J. Mod. Phys. A 26, 3249–3258 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Rey, S.-J., Sugino, F.: A Nonperturbative Proposal for Nonabelian Tensor Gauge Theory and Dynamical Quantum Yang-Baxter Maps. http://arxiv.org/abs/1002.4636v1 [hep-th], 2010

  20. Boulatov D.V.: A Model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Ooguri H.: Topological lattice models in four-dimensions. Mod. Phys. Lett. A 7, 2799 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Freidel L.: Group field theory: An overview. Int. J. Theor. Phys. 44, 1769 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oriti, D.: The group field theory approach to quantum gravity: some recent results. In: The Planck Scale: Proc. of the XXV Max Born Symp., J. Kowalski-Gilkman, R. Durka, M. Szczachor (eds.), Melville, NJ: AIP, 2009

  24. Oriti, D.: The microscopic dynamics of quantum space as a group field theory, http://arxiv.org/abs/1110.5606v1 [hep-th] 2011, to appear in Foundations of Space and Time: Reflections on Quntum Gravity, C. Ellis, J. Murgan, A. Weltman (eds.), Cambridge Univ. Press

  25. Barrett J.W., Crane L.: An Algebraic interpretation of the Wheeler-DeWitt equation. Class. Quant. Grav. 14, 2113 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Engle J., Livine E., Pereira R., Rovelli C.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B799, 136 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. Freidel L., Krasnov K.: A New Spin Foam Model for 4d Gravity. Class. Quant. Grav. 25, 125018 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  28. Ben Geloun J., Gurau R., Rivasseau V.: EPRL/FK Group Field Theory. Europhys. Lett. 92, 60008 (2010)

    Article  ADS  Google Scholar 

  29. Krajewski T., Magnen J., Rivasseau V., Tanasa A., Vitale P.: Quantum Corrections in the Group Field Theory Formulation of the EPRL/FK Models. Phys. Rev. D 82, 124069 (2010)

    Article  ADS  Google Scholar 

  30. Freidel L., Gurau R., Oriti D.: Group field theory renormalization - the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009)

    Article  ADS  Google Scholar 

  31. Magnen J., Noui K., Rivasseau V., Smerlak M.: Scaling behavior of three-dimensional group field theory. Class. Quant. Grav. 26, 185012 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  32. Ben Geloun J., Magnen J., Rivasseau V.: Bosonic Colored Group Field Theory. Eur. Phys. J. C 70, 1119 (2010)

    Article  ADS  Google Scholar 

  33. Ben Geloun J., Krajewski T., Magnen J., Rivasseau V.: Linearized Group Field Theory and Power Counting Theorems. Class. Quant. Grav. 27, 155012 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  34. Bonzom V., Smerlak M.: Bubble divergences from cellular cohomology. Lett. Math. Phys. 93, 295 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Bonzom V., Smerlak M.: Bubble divergences from twisted cohomology. Commun Math. Phys. 312(2), 399–426 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Bonzom V., Smerlak M.: Bubble divergences: sorting out topology from cell structure. Ann. H. Poincare 13, 185–208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gurau R.: Colored Group Field Theory. Commun. Math. Phys. 304, 69 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Gurau R.: The 1/N expansion of colored tensor models. Ann. H. Poincare 12, 829–847 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gurau R., Rivasseau V.: The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95, 50004 (2011)

    Article  ADS  Google Scholar 

  40. Gurau R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincare 13, 399 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Bonzom V., Gurau R., Riello A., Rivasseau V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Bonzom V., Gurau R., Rivasseau V.: The Ising Model on Random Lattices in arbitrary dimensions. Phys. Lett. B 711, 88 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  43. Benedetti D., Gurau R.: Phase Transition in Dually Weighted Colored Tensor Models. Nucl. Phys. B 855, 420 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Gurau R., Ryan J.P.: Colored Tensor Models - a review. SIGMA 8, 020 (2012)

    MathSciNet  Google Scholar 

  45. Gurau R.: Topological Graph Polynomials in Colored Group Field Theory. Ann. H. Poincare 11, 565 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gurau R.: Lost in Translation: Topological Singularities in Group Field Theory. Class. Quant. Grav. 27, 235023 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  47. Baratin A., Girelli F., Oriti D.: Diffeomorphisms in group field theories. Phys. Rev. D 83, 104051 (2011)

    Article  ADS  Google Scholar 

  48. Gurau R.: The double scaling limit in arbitrary dimensions: A Toy Model. Phys. Rev. D 84, 124051 (2011)

    Article  ADS  Google Scholar 

  49. Gurau R.: A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B 852, 592 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Gurau, R.: Universality for Random Tensors. http://arxiv.org/abs/1111.0519v2 [math.PR], 2011

  51. Grosse H., Wulkenhaar R.: Renormalisation of phi**4 theory on noncommutative R**4 in the matrix base. Commun. Math. Phys. 256, 305 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Rivasseau V., Vignes-Tourneret F., Wulkenhaar R.: Renormalization of noncommutative φ4-theory by multi-scale analysis. Commun. Math. Phys. 262, 565 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Oriti D., Sindoni L.: Towards classical geometrodynamics from Group Field Theory hydrodynamics. New J. Phys. 13, 025006 (2011)

    Article  ADS  Google Scholar 

  54. Ben Geloun J., Bonzom V.: Radiative corrections in the Boulatov-Ooguri tensor model: The 2-point function. Int. J. Theor. Phys. 50, 2819 (2011)

    Article  MATH  Google Scholar 

  55. Rivasseau, V.: From perturbative to constructive renormalization. Princeton series in physics, Princeton, NJ: Princeton Univ. Pr., 1991

  56. “it Handbook of Mathematical Functions,” 10th edition Appl. Math. Ser. 55, Section 19, A. Abramowitz and I. A. Stegun editors, NY: Dover, 1972

  57. Gallavotti G., Nicolo F.: Renormalization theory in four-dimensional scalar fields. I. Commun. Math. Phys. 100, 545 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  58. Rivasseau, V.: Non-commutative renormalization. http://arxiv.org/abs/0705.0705v1 [hep-th], 2007

  59. Lins, S.: Gems, Computers and Attractors for 3-Manifolds. Series on Knots and Everything, Vol. 5, Singapore: World Scientific, 1995

  60. Ferri M., Gagliardi C.: Cristallisation moves. Pacific J. Math. 100, 85–103 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  61. Filk T.: Divergencies in a field theory on quantum space. Phys. Lett. B 376, 53–58 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F.: Renormalization of non-commutative \({\varphi_{4}^{4} }\) field theory in x space. Commun. Math. Phys. 267, 515 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Feldman J., Magnen J., Rivasseau V., Trubowitz E.: An Intrinsic 1/N expansion for many fermion systems. Europhys. Lett. 24, 437 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Wang Z., Wan S.: Renormalization of Orientable Non-Commutative Complex \({\varphi_{(3)}^{6} }\) Model. Ann. H. Poincare 9, 65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  65. Ben Geloun J.: Classical group field theory. J. Math. Phys. 53, 022901 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  66. Ben Geloun J.: Ward-Takahashi identities for the colored Boulatov model. J. Phys. A 44, 415402 (2011)

    Article  MathSciNet  Google Scholar 

  67. Rivasseau V.: Quantum gravity and renormalization: The tensor track. AIP Conf. Proc. 1444, 18 (2011)

    ADS  Google Scholar 

  68. Ben Geloun, J., Samary, D.O.: 3D Tensor Field Theory: Renormalization and One-loop β-functions. http://arxiv.org/abs/1201.0176v1 [hep-th], 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Ben Geloun.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geloun, J.B., Rivasseau, V. A Renormalizable 4-Dimensional Tensor Field Theory. Commun. Math. Phys. 318, 69–109 (2013). https://doi.org/10.1007/s00220-012-1549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1549-1

Keywords

Navigation