Skip to main content
Log in

Spectra of Quantum KdV Hamiltonians, Langlands Duality, and Affine Opers

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a system of relations in the Grothendieck ring of the category \({\mathcal{O}}\) of representations of the Borel subalgebra of an untwisted quantum affine algebra \({U_q(\widehat{\mathfrak{g}})}\) introduced in Hernandez and Jimbo (Compos Math 148:1593–1623, 2012). This system was discovered, under the name \({Q\widetilde{Q}}\)-system, in Masoero et al. (Commun Math Phys 344:719–750, 2016; Commun Math Phys 349:1063–1105, 2017), where it was shown that solutions of this system can be attached to certain \({^L\widehat{\mathfrak{g}}}\)-affine opers, introduced in Feigin and Frenkel (Adv Stud Pure Math 61:185–274, 2007), where \({^L\widehat{g}}\) is the Langlands dual affine Kac–Moody algebra of \({\widehat{\mathfrak{g}}}\). Together with the results of Bazhanov et al. (Commun Math Phys 200:297–324, 1999; Nucl Phys B 622:475–547 2002) which enable one to associate quantum \({\widehat{\mathfrak{g}}}\)-KdV Hamiltonians to representations from the category \({\mathcal{O}}\), this provides strong evidence for the conjecture of Feigin and Frenkel (Adv Stud Pure Math 61:185–274, 2007) linking the spectra of quantum \({\widehat{\mathfrak{g}}}\)-KdV Hamiltonians and \({^L\widehat{\mathfrak{g}}}\)-affine opers. As a bonus, we obtain a direct and uniform proof of the Bethe Ansatz equations for a large class of quantum integrable models associated to arbitrary untwisted quantum affine algebras, under a mild genericity condition. We also conjecture analogues of these results for the twisted quantum affine algebras and elucidate the notion of opers for twisted affine algebras, making a connection to twisted opers introduced in Frenkel and Gross (Ann Math 170:1469–1512, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazhanov V.V., Hibberd A.N., Khoroshkin S.M.: Integrable structure of \({{\mathcal W}_3}\) conformal field theory, quantum Boussinesq theory and boundary affine Toda theory. Nucl. Phys. B 622, 475–547 (2002)

    Article  ADS  MATH  Google Scholar 

  2. Bazhanov V., Lukyanov S., Zamolodchikov A.: Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe Ansatz. Commun. Math. Phys. 177, 381–398 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory. II. Q-operator and DDV equation. Commun. Math. Phys. 190, 247–278 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory. III. The Yang–Baxter Relations. Commun. Math. Phys. 200, 297–324 (1999)

    Article  ADS  MATH  Google Scholar 

  5. Bazhanov V., Lukyanov S., Zamolodchikov A.: Spectral determinants for Schrödinger equation and Q-operators of conformal field theory. J. Stat. Phys. 102, 567–576 (2001)

    Article  ADS  MATH  Google Scholar 

  6. Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Higher-level eigenvalues of Q-operators and Schrodinger equation. Adv. Theor. Math. Phys. 7, 711–725 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bazhanov V.V., Frassek R., Lukowski T., Meneghelli C., Staudacher M.: Baxter Q-operators and representations of Yangians. Nucl. Phys. B 850, 148–174 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bazhanov V.V., Reshetikhin N.Yu.: Restricted solid on solid models connected with simply laced Lie algebra. J. Phys. A 23, 477–1492 (1990)

    MATH  Google Scholar 

  9. Beck J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165, 555–568 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s Integrable System and Hecke Eigensheaves. www.math.uchicago.edu/~arinkin/langlands

  11. Beilinson, A., Drinfeld, V.: Opers, Preprint arXiv:math.AG/0501398.

  12. Chari, V., Hernandez D.: Beyond Kirillov–Reshetikhin modules. In: Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications, Contemporary Mathematics, vol. 506, pp. 49–81. AMS Providence (2010)

  13. Chari V., Pressley A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  14. Dorey P., Dunning C., Masoero D., Suzuki J., Tateo R.: Pseudo-differential equations, and the Bethe Ansatz for the classical Lie algebras. Nucl. Phys. B772, 249–289 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Dorey P., Dunning C., Tateo R.: Differential equations for general SU(n) Bethe ansatz systems. J. Phys. A 33, 8427–8442 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dorey P., Dunning C., Tateo R.: The ODE/IM correspondence. J. Phys. A40, R205 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Dorey P., Tateo R.: Anharmonic oscillators, the thermodynamic Bethe ansatz, and nonlinear integral equations. J. Phys. A32, L419–L425 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Dorey P., Tateo R.: On the relation between Stokes multipliers and the T–Q systems of conformal field theory. Nucl. Phys. B563, 573–602 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Drinfel’d V.: A new realization of Yangians and of quantum affine algebras. Sov. Math. Dokl. 36, 212–216 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Drinfeld V., Sokolov V.: Lie algebras and KdV type equations. J. Sov. Math. 30, 1975–2036 (1985)

    Article  Google Scholar 

  21. Eguchi T., Yang S.-K.: Deformations of conformal field theories and soliton equations. Phys. Lett. 224B, 373–378 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  22. Feigin B., Frenkel E.: Representations of affine Kac–Moody algebras, bosonization and resolutions. Lett. Math. Phys. 19, 307–317 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Feigin B., Frenkel E.: Quantization of the Drinfeld–Sokolov reduction. Phys. Lett. B246, 75–81 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Feigin, B., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gelfand-Dikii algebras. In: Tsuchiya, A., Eguchi, T., Jimbo, M. (eds) Infinite Analysis, Advances Series in Mathematical Physics, vol. 16, pp. 197–215. World Scientific, Singapore (1992)

  25. Feigin, B., Frenkel, E.: Integrals of motion and quantum groups. In: Proceedings of the C.I.M.E. School Integrable Systems and Quantum Groups, Italy, June 1993, Lecture Notes in Mathematics, vol. 1620. Springer (1995). arXiv:hep-th/9310022

  26. Feigin, B., Frenkel, E.: Quantization of soliton systems and Langlands duality. In: Exploration of New Structures and Natural Constructions in Mathematical Physics. Advanced Studies in Pure Mathematics 61, Mathematics Society, Japan, Tokyo, pp. 185–274 (2007). arXiv:0705.2486

  27. Feigin B., Frenkel E., Reshetikhin N.: Gaudin model, Bethe ansatz and critical level. Commun. Math. Phys. 166, 27–62 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Feigin, B., Frenkel, E., Smirnov, F.: unpublished

  29. Feigin B., Frenkel E., Toledano Laredo V.: Gaudin models with irregular singularities. Adv. Math. 223, 873–948 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Feigin B., Jimbo M., Miwa T., Mukhin E.: Finite type modules and Bethe Ansatz for quantum toroidal gl(1). Commun. Math. Phys. 356, 285–327 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Frenkel, E.: Affine algebras, Langlands duality and Bethe Ansatz. In: Iagolnitzer, D. (ed) Proceedings of the International Congress of Mathematical Physics, Paris, 1994, pp. 606–642, International Press (1995). arXiv:q-alg/9506003

  32. Frenkel, E.: Langlands Correspondence for Loop Groups, Cambridge Studies in Advanced Mathematics, vol. 103. Cambridge University Press (2007)

  33. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, 2nd edn, vol. 88. AMS, (2004)

  34. Frenkel E., Gross B.: A rigid irregular connection on the projective line. Ann. Math. 170, 1469–1512 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Frenkel E., Hernandez D.: Baxter’s relations and spectra of quantum integrable models. Duke Math. J. 164, 2407–2460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Frenkel E., Mukhin E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216, 23–57 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Frenkel E., Reshetikhin N.: The q-characters of representations of quantum affine algebras and deformations of W-algebras, in Recent Developments in Quantum Affine Algebras and related topics. Contemp. Math. 248, 163–205 (1999) arXiv:math/9810055

    Article  MATH  Google Scholar 

  38. Frenkel, E., Zhu, X.: Gerbal Representations of Double Loop Groups, Int. Math. Res. Not. 17: 3929–4013 (2012). arXiv:0810.1487

  39. Hernandez D.: The Kirillov–Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63–87 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Hernandez D.: Smallness problem for quantum affine algebras and quiver varieties. Ann. Scient. Éc. Norm. Sup. 41, 271–306 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hernandez D.: On minimal affinizations of representations of quantum groups. Commun. Math. Phys. 277, 221–259 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Hernandez, D.: Kirillov–Reshetikhin conjecture: the general case. Int. Math. Res. Not. 2010, 149–193

  43. Hernandez D., Jimbo M.: Asymptotic representations and Drinfeld rational fractions. Compos. Math. 148, 1593–1623 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hernandez D., Leclerc B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154, 265–341 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hernandez D., Leclerc B.: Cluster algebras and category \({\mathcal{O}}\) for representations of Borel subalgebras of quantum affine algebras. Algebra Number Theory 10, 2015–2052 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Inoue R., Iyama O., Kuniba A., Nakanishi T., Suzuki J.: Periodicities of T-systems and Y-systems. Nagoya Math. J. 197, 59–174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

  48. Kojima T.: The Baxter’s Q operator for the W algebra W N. J. Phys. A 41, 355206 (2008)

    MATH  Google Scholar 

  49. Kuniba A., Suzuki J.: Analytic Bethe Ansatz for fundamental representations of Yangians. Commun. Math. Phys. 173, 225–264 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Kuniba A., Suzuki J.: Functional relations and analytic Bethe ansatz for twisted quantum affine algebras. J. Phys. A 28, 711–722 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Kuperschmidt B.A., Mathieu P.: Quantum KdV like equations and perturbed conformal field theories. Phys. Lett. B227, 245–250 (1989)

    Article  ADS  Google Scholar 

  52. Leclerc, B.: Quantum loop algebras, quiver varieties, and cluster algebras. In: Skowroński, A., Yamagata, K. (eds) Representations of Algebras and Related Topics, European Mathematical Society Series of Congress Reports, pp. 117–152 (2011)

  53. Masoero D., Raimondo A., Valeri D.: Bethe Ansatz and the spectral theory of affine Lie algebra-valued connections. The simply-laced case. Commun. Math. Phys. 344, 719–750 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Masoero D., Raimondo A., Valeri D.: Bethe Ansatz and the spectral theory of affine Lie algebra-valued connections, The non simply-laced case. Commun. Math. Phys. 349, 1063–1105 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Nekrasov N., Pestun V., Shatashvili S.: Quantum geometry and quiver gauge theories. Commun. Math. Phys. 357, 357–519 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. Reyman A., Semenov-Tian-Shansky M.: Algebras of flows and nonlinear partial differential equations. Sov. Math. Dokl. 21, 630–634 (1980)

    MATH  Google Scholar 

  57. Reyman, A., Semenov-Tian-Shansky, M.: Integrable Systems (group-theoretical approach), Moscow–Izhevsk. RCD Publishing House, Institute of Computer Studies (2003) (in Russian)

  58. Reyman A., Semenov-Tian-Shansky M., Frenkel I.: Graded Lie algebras and completely integrable dynamical systems. Sov. Math. Dokl. 20, 811–814 (1979)

    MATH  Google Scholar 

  59. Reshetikhin N.: A method of functional equations in the theory of exactly solvable quantum systems. Lett. Math. Phys. 7, 205–213 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  60. Reshetikhin N.: Integrable models of quantum one-dimensional magnets with O(N) and Sp(2k) Symmetry. Theor. Math. Phys. 63, 555–569 (1985)

    Article  Google Scholar 

  61. Reshetikhin N.: The spectrum of the transfer matrices connected with Kac–Moody algebras. Lett. Math. Phys. 14, 235–246 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Sun J.: Polynomial relations for q-characters via the ODE/IM correspondence. SIGMA 8, 028 (2012)

    MathSciNet  MATH  Google Scholar 

  63. Zamolodchikov A.: Integrable field theory from conformal field theory. Adv. Stud. Pure Math. 19, 641–674 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We are grateful to Davide Masoero and Andrea Raimondo for fruitful discussions and explanations about their work [MRV1,MRV2], which was the main motivation for this paper. We also thank them for raising a question about the meaning of our formula for \({^L\widehat{g}}\)-opers in the non-simply laced case, which helped us to formulate it more precisely (Sect. 8.6).We thank Bernard Leclerc for his comments on the first version of this paper, and the referees for their thorough reading of the paper and useful comments. E. Frenkel was supported by the NSF Grant DMS-1201335. D. Hernandez was supported in part by the European Research Council under the European Union’s Framework Programme H2020 with ERC Grant Agreement No. 647353 QAffine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Frenkel.

Additional information

Communicated by N. Nekrasov

2018 by the authors. This article may be reproduced in its entirety for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frenkel, E., Hernandez, D. Spectra of Quantum KdV Hamiltonians, Langlands Duality, and Affine Opers. Commun. Math. Phys. 362, 361–414 (2018). https://doi.org/10.1007/s00220-018-3194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3194-9

Navigation