Skip to main content
Log in

On Minimal Affinizations of Representations of Quantum Groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study minimal affinizations of representations of quantum groups (generalizations of Kirillov-Reshetikhin modules of quantum affine algebras introduced in [Cha1]). We prove that all minimal affinizations in types A, B, G are special in the sense of monomials. Although this property is not satisfied in general, we also prove an analog property for a large class of minimal affinizations in types C, D, F. As an application, the Frenkel-Mukhin algorithm [FM1] works for these modules. For minimal affinizations of type A, B we prove the thin property (the l-weight spaces are of dimension 1) and a conjecture of [NN1] (already known for type A). The proof of the special property is extended uniformly for more general quantum affinizations of quantum Kac-Moody algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourbaki, N.: Groupes et algèbres de Lie, Chapitres IV-VI. Paris:Hermann, 1968

  2. Bernard D. and LeClair A. (1991). Quantum group symmetries and nonlocal currents in 2D QFT. Commun. Math. Phys. 142(1): 99–138

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bazhanov V.V. and Reshetikhin N. (1990). Restricted solid-on-solid models connected with simply laced algebras and conformal field theory. J. Phys. A 23(9): 1477–1492

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Chari V. (1995). Minimal affinizations of representations of quantum groups: the rank 2 case. Publ. Res. Inst. Math. Sci. 31(5): 873–911

    MATH  MathSciNet  Google Scholar 

  5. Chari V. (2001). On the fermionic formula and the Kirillov-Reshetikhin conjecture. Int. Math. Res. Not. 2001(12): 629–654

    Article  MATH  MathSciNet  Google Scholar 

  6. Cherednik I. (1987). A new interpretation of Gelfand-Tzetlin bases. Duke Math. J. 54(2): 563–577

    Article  MATH  MathSciNet  Google Scholar 

  7. Cherednik, I.: Quantum groups as hidden symmetries of classic representation theory. In: Differential geometric methods in theoretical physics (Chester, 1988), Teaneck, NJ: World Sci. Publishing, 1989, pp. 47–54

  8. Chari V. and Moura A. (2005). Characters and blocks for finite-dimensional representations of quantum affine algebras. Int. Math. Res. Not. 2005(5): 257–298

    Article  MATH  MathSciNet  Google Scholar 

  9. Chari V. and Moura A. (2006). Characters of fundamental representations of quantum affine algebras. Acta Appl. Math. 90(1–2): 43–63

    Article  MATH  MathSciNet  Google Scholar 

  10. Chari, V., Moura, A.: Kirillov–Reshetikhin modules associated to G 2. math.RT/0604281, 2006

  11. Chari V. and Pressley A. (1991). Quantum Affine Algebras. Commun. Math. Phys. 142: 261–283

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Chari, V., Pressley A.: Quantum affine algebras and their representations. In: Representations of groups (Banff, AB, 1994), CMS Conf. Proc, 16, Providence, RI: Amer. Math. Soc., 1995, pp. 59–78

  13. Chari V. and Pressley A. (1996). Minimal affinizations of representations of quantum groups: the simply laced case, J. Algebra 184(1): 1–30

    Article  MATH  MathSciNet  Google Scholar 

  14. Chari V. and Pressley A. (1995). Minimal affinizations of representations of quantum groups: the nonsimply-laced case. Lett. Math. Phys. 35(2): 99–114

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Chari V. and Pressley A. (1996). Minimal affinizations of representations of quantum groups: the irregular case. Lett. Math. Phys. 36(3): 247–266

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Chari V. and Pressley A. (1994). A Guide to Quantum Groups. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Chari, V., Pressley, A.: Integrable and Weyl modules for quantum affine sl2. In: Quantum groups and Lie theory (Durham, 1999), London Math. Soc. Lecture Note Ser. 290, Cambridge: Cambridge Univ. Press 2001, pp. 48–62

  18. Dorey P. (1991). Root systems and purely elastic S-matrices. Nucl. Phys. B 358(3): 654–676

    Article  ADS  MathSciNet  Google Scholar 

  19. Drinfeld, V.G.: Quantum groups, In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Providence, RI: Amer. Math. Soc. (1987), pp. 798–820

  20. Drinfeld V.G. (1988). A new realization of Yangians and of quantum affine algebras. Sov. Math. Dokl. 36(2): 212–216

    MathSciNet  Google Scholar 

  21. Delius G.W., MacKay N.J. (2006) Affine quantum groups. Encyclopedia of Mathematical Physics, Oxford:Elsevier, 2006

  22. Fourier G. and Littelmann P. (2007). Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. Adv. Math. 211(2): 566–593

    Article  MATH  MathSciNet  Google Scholar 

  23. Frenkel E. and Mukhin E. (2001). Combinatorics of q-Characters of Finite-Dimensional Representations of Quantum Affine Algebras. Commun. Math. Phys., 216(1): 23–57

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Frenkel E. and Mukhin E. (2002). The Hopf algebra \(Rep {\mathcal{U}}_q \hat{gl}_\infty\). Selecta Math. (N.S.) 8(4): 537–635

    MATH  MathSciNet  Google Scholar 

  25. Frenkel E. and Reshetikhin N. (1999). The q-Characters of Representations of Quantum Affine Algebras and Deformations of W-Algebras. In: Recent Developments in Quantum Affine Algebras and Related Topics. Cont. Math. 248: 163–205

    MathSciNet  Google Scholar 

  26. Frenkel I.B. and Reshetikhin N. (1992). Quantum affine algebras and holonomic difference equations. Commun. Math. Phys. 146(1): 1–60

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Grojnowski, I., Kleber, M.: Generalized Kirillov-Reshetikhin Modules for Quantum Affine Algebras. http://www.msri.org/publications/ln/msri/2002/ssymmetry/grojnowski/1/index.html, 2002

  28. Hernandez D. (2004). Algebraic approach to q,t-characters. Adv. Math. 187(1): 1–52

    Article  MATH  MathSciNet  Google Scholar 

  29. Hernandez D. (2005). Representations of quantum affinizations and fusion product. Transform. Groups 10(2): 163–200

    Article  MATH  MathSciNet  Google Scholar 

  30. Hernandez D. (2005). Monomials of q and q,t-chraracters for non simply-laced quantum affinizations. Math. Z. 250(2): 443–473

    Article  MATH  MathSciNet  Google Scholar 

  31. Hernandez D. (2006). The Kirillov-Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596: 63–87

    MATH  MathSciNet  Google Scholar 

  32. Hernandez, D.: Drinfeld coproduct, quantum fusion tensor category and applications. Proc. London Math. Soc. (to appear) math.QA/0504269, 2005

  33. Hernandez, D.: Smallness problem for quantum affine algebras and quiver varieties. math. QA/0607526, 2006

  34. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Tsuboi, Z.: Paths, crystals and fermionic formulae. In: MathPhys odyssey, 2001, Prog. Math. Phys. 23, Boston, MA, Birkhäusher Boston, 2002, 205–272

  35. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Remarks on fermionic formula. In: Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math. 248, Providence, RI: Amer. Math. Soc. 1999, pp. 243–291

  36. Jimbo M. (1985). A q-difference analogue of \({\mathcal{U}}({\mathfrak{g}})\) and the Yang-Baxter equation. Lett. Math. Phys. 10(1): 63–69

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Kac V.: (1990) Infinite dimensional Lie algebras. 3rd Edition, Cambridge:Cambridge University Press, 1990

  38. Kleber M. (1997). Combinatorial structure of finite-dimensional representations of Yangians: the simply-laced case. Internat. Math. Res. Notices 1997(4): 187–201

    Article  MATH  MathSciNet  Google Scholar 

  39. Knight H. (1995). Spectra of tensor products of finite-dimensional representations of Yangians. J. Alg. 174(1): 187–196

    Article  MATH  MathSciNet  Google Scholar 

  40. Kuniba A. and Nakanishi T. (2002). The Bethe equation at q =  0, the Möbius inversion formula and weight multiplicities, II: The X n case. J. Alg. 251(2): 577–618

    Article  MATH  MathSciNet  Google Scholar 

  41. Kuniba A., Nakamura S. and Hirota R. (1996). Pfaffian and determinant solutions to a discretized Toda equation for B r , C r and D r . J. Phys. A 29(8): 1759–1766

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Kuniba A., Ohta Y. and Suzuki J. (1995). Quantum Jacobi-Trudi and Giambelli Formulae for \({{\mathcal{U}}}_q(B_r^{(1)})\) from Analytic Bethe Ansatz. J. Phys. A 28(21): 6211–6226

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Kirillov, A.N., Reshetikhin, N.: Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras. J. Sov. Math. 52(3), 3156–3164 (1990); translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160, Anal. Teor. Chisel i Teor. Funktsii. 8, 211–221, 301 (1987)

  44. Kuniba A. and Suzuki S. (1995). Analytic Bethe Ansatz for fundamental representations and yangians. Commun. Math. Phys. 173: 225–264

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Miki K. (2000). Representations of quantum toroidal algebra U q (sl n +  1,tor) (n ≥  2). J. Math. Phys. 41(10): 7079–7098

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. Molev, A.: On Gelfand-Tsetlin bases for representations of classical Lie algebras. In: Formal power series and algebraic combinatorics (Moscow, 2000), Berlin:Springer 2000, pp. 300–308

  47. Nakajima H. (2001). Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Amer. Math. Soc. 14(1): 145–238

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Nakajima, H.: T-analogue of the q-characters of finite dimensional representations of quantum affine algebras. In: Physics and combinatorics, 2000 (Nagoya), River Edge, NJ:World Sci. Publishing 2001, pp. 196–219

  49. Nakajima, H.: t–analogs of q–characters of quantum affine algebras of type A n , D n . In: Combinatorial and geometric representation theory (Seoul, 2001), Contemp. Math. 325, Providence, RI:Amer. Math. Soc. 2003, pp. 141–160

  50. Nakajima H. (2004). Quiver Varieties and t-Analogs of q-Characters of Quantum Affine Algebras. Ann. of Math. 160: 1057–1097

    Article  MathSciNet  Google Scholar 

  51. Nakajima H. (2003). t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras. Represent. Theory 7: 259–274 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  52. Nazarov M. (2004). Representations of twisted Yangians associated with skew Young diagrams. Selecta Math. (N.S.) 10(1): 71–129

    Article  MATH  MathSciNet  Google Scholar 

  53. Nakai W. and Nakanishi T. (2006). Paths, tableaux and q-characters of quantum affine algebras: the C n case. J. Phys. A 39(9): 2083–2115

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. Nakai, W., Nakanishi, T.: Paths, tableaux descriptions of Jacubi-Trudi determinant associated with quantum affine algebra of type D n . J. Algebraic Combin. (to appear) math.QA/0603160, 2006

  55. Nakai W. and Nakanishi T. (2007). Paths, tableaux descriptions of Jacubi-Trudi determinant associated with quantum affine algebra of type C n . SIGMA 3: 078

    MathSciNet  Google Scholar 

  56. Nazarov M. and Tarasov V. (1998). Representations of Yangians with Gelfand-Zetlin bases. J. Reine Angew. Math. 496: 181–212

    MATH  MathSciNet  Google Scholar 

  57. Varagnolo M. (2000). Quiver varieties and Yangians. Lett. Math. Phys. 53(4): 273–283

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hernandez.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez, D. On Minimal Affinizations of Representations of Quantum Groups. Commun. Math. Phys. 276, 221–259 (2007). https://doi.org/10.1007/s00220-007-0332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0332-1

Keywords

Navigation