Skip to main content
Log in

On the ‘Stationary Implies Axisymmetric’ Theorem for Extremal Black Holes in Higher Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

All known stationary black hole solutions in higher dimensions possess additional rotational symmetries in addition to the stationary Killing field. Also, for all known stationary solutions, the event horizon is a Killing horizon, and the surface gravity is constant. In the case of non-degenerate horizons (non-extremal black holes), a general theorem was previously established [24] proving that these statements are in fact generally true under the assumption that the spacetime is analytic, and that the metric satisfies Einstein’s equation. Here, we extend the analysis to the case of degenerate (extremal) black holes. It is shown that the theorem still holds true if the vector of angular velocities of the horizon satisfies a certain “diophantine condition,” which holds except for a set of measure zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunting, G.L.: Proof of the Uniqueness Conjecture for Black Holes. PhD Thesis, Univ. of New England, Armidale, N.S.W., 1983

  2. Candlish G.N., Reall H.S.: On the smoothness of static multi-black hole solutions in higher dimensional Einstein-Maxwell theory. Class. Quant. Grav. 24, 6025–6039 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Carter B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331–333 (1971)

    Article  ADS  Google Scholar 

  4. Chruściel P.T.: On rigidity of analytic black holes. Commun. Math. Phys. 189, 1–7 (1997)

    Article  MATH  ADS  Google Scholar 

  5. Chrusciel, P.T., Galloway, G.J., Solis, D.: Topological censorship for Kaluza-Klein space-times. http://arxiv.org/abs/0808.3233v1[gr-qc], 2008

  6. Chruściel P.T., Wald R.M.: Maximal hypersurfaces in asymptotically stationary space-times. Commun. Math. Phys. 163, 561 (1994)

    Article  MATH  ADS  Google Scholar 

  7. Chruściel P.T., Wald R.M.: On the topology of stationary black holes. Class. Quant. Grav. 11, L147 (1994)

    Article  Google Scholar 

  8. Elvang H., Rodriguez M.J.: Bicycling black rings. JHEP 0804, 045 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Emparan R., Reall H.S.: A rotating black ring in five dimensions. Phys. Rev. Lett. 88, 101101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Emparan R., Reall H.S.: Black holes in higher dimensions. Living Rev. Rel. 11, 6 (2008)

    Google Scholar 

  11. Figueras P., Kunduri H.K., Lucietti J., Rangamani M.: Extremal vacuum black holes in higher dimensions. Phys. Rev. D 78, 044042 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. Friedrich H.: On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations. J. Diff. Geom. 34, 275 (1991)

    MATH  MathSciNet  Google Scholar 

  13. Friedrich H., Racz I., Wald R.M.: On the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon. Commun. Math. Phys. 204, 691–707 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Galloway G.J., Schleich K., Witt D.M., Woolgar E.: Topological censorship and higher genus black holes. Phys. Rev. D 60, 104039 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. Galloway G.J., Schleich K., Witt D., Woolgar E.: The AdS/CFT correspondence conjecture and topological censorship. Phys. Lett. B 505, 255 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Gauntlett J.P., Gutowski J.B., Hull C.M., Pakis S., Reall H.S.: All supersymmetric solutions of minimal supergravity in five dimensions. Class. Quant. Grav. 20, 4587 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Gibbons G.W., Horowitz G.T., Townsend P.K.: Higher dimensional resolution of dilatonic black hole singularities. Class. Quant. Grav. 12, 297 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Gibbons G.W., Ida D., Shiromizu T.: Uniqueness of (dilatonic) charged black holes and black p-branes in higher dimensions. Phys. Rev. D 66, 044010 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gibbons G.W., Ida D., Shiromizu T.: Uniqueness and non-uniqueness of static black holes in higher dimensions. Phys. Rev. Lett. 89, 041101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. Harmark T.: Stationary and axisymmetric solutions of higher-dimensional general relativity. Phys. Rev. D 70, 124002 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. Harmark T., Olesen P.: On the structure of stationary and axisymmetric metrics. Phys. Rev. D 72, 124017 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hawking S.W.: Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space-time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  24. Hollands S., Ishibashi A., Wald R.M.: A higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271, 699–722 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Hollands S., Yazadjiev S.: Uniqueness theorem for 5-dimensional black holes with two axial Killing fields. Commun. Math. Phys. 283, 749–768 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Hollands S., Yazadjiev S.: A Uniqueness theorem for 5-dimensional Einstein-Maxwell black holes. Class. Quant. Grav. 25, 095010 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ionescu, A. D., Klainerman, S.: On the uniqueness of smooth, stationary black holes in vacuum. http://arxiv.org/abs/0711.0040v2[gr-qc], 2008

  28. Isenberg J., Moncrief V.: Symmetries of cosmological Cauchy horizons with exceptional orbits. J. Math. Phys. 26, 1024–1027 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Israel W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967)

    Article  ADS  Google Scholar 

  30. Israel W.: Event horizons in electrovac vacuum space-times. Commun. Math. Phys. 8, 245–260 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  31. Kunduri H.K., Lucietti J., Reall H.S.: Near-horizon symmetries of extremal black holes. Class. Quant. Grav. 24, 4169 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Kunduri, H.K., Lucietti, J.: A classification of near-horizon geometries of extremal vacuum black holes. http://arxiv.org/abs/0806.2051v2[hep-th], 2008

  33. Mazur P.O.: Proof of uniqueness of the Kerr-Newman black hole solution. J. Phys. A 15, 3173–3180 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Moncrief V., Isenberg J.: Symmetries of cosmological Cauchy horizons. Commun. Math. Phys. 89, 387–413 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Moncrief V., Isenberg J.: Symmetries of higher dimensional black holes. Class. Quant. Grav. 25, 195015 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  36. Müller zum Hagen H.: Characteristic initial value problem for hyperbolic systems of second order differential systems. Ann. Inst. Henri Poincaré 53, 159–216 (1990)

    MATH  Google Scholar 

  37. Myers R.C., Perry M.J.: Black holes in higher dimensional space-times. Annals Phys. 172, 304 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Nomizu K.: On local and global existence of Killing vector fields. Ann. Math. 72, 105–120 (1960)

    Article  MathSciNet  Google Scholar 

  39. Pomeransky, A.A., Sen’kov, R.A.: Black ring with two angular momenta. http://arxiv.org/abs/hep-th/0612005, 2006

  40. Racz I.: On further generalization of the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon. Class. Quant. Grav. 17, 153 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Racz I., Wald R.M.: Extensions of spacetimes with Killing horizons. Class. Quant. Grav. 9, 2643–2656 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Racz I., Wald R.M.: Global extensions of spacetimes describing asymptotic final states of black holes. Class. Quant. Grav. 13, 539–552 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Reall H.S.: Higher dimensional black holes and supersymmetry. Phys. Rev. D 68, 024024 (2003) [Erratum-ibid. D 70, 089902 (2004)]

    Article  ADS  MathSciNet  Google Scholar 

  44. Reall H.S.: Counting the microstates of a vacuum black ring. JHEP 0805, 013 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  45. Rendall A.: Reduction of the characteristic initial value problem to the Cauchy problem and its application to the Einstein equations. Proc. Roy. Soc. Lond. A427, 211–239 (1990)

    ADS  MathSciNet  Google Scholar 

  46. Robinson D.C.: Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905–906 (1975)

    Article  ADS  Google Scholar 

  47. Rogatko M.: Uniqueness theorem of static degenerate and non-degenerate charged black holes in higher dimensions. Phys. Rev. D 67, 084025 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  48. Rogatko M.: Classification of static charged black holes in higher dimensions. Phys. Rev. D 73, 124027 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  49. Schmidt W.M.: Norm form equations. Ann. of Math. (2) 96, 526–551 (1972)

    Article  MathSciNet  Google Scholar 

  50. Sudarsky D., Wald R.M.: Extrema of mass, stationarity, and staticity, and solutions to the Einstein Yang-Mills equations. Phys. Rev. D 46, 1453–1474 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  51. Walters P.: An Introduction to Ergodic Theory. Springer-Verlag, New York (1982)

    MATH  Google Scholar 

  52. Welch D.L.: On the smoothness of the horizons of multi-black hole solutions. Phys. Rev. D 52, 985 (1995)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hollands.

Additional information

Communicated by G. W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollands, S., Ishibashi, A. On the ‘Stationary Implies Axisymmetric’ Theorem for Extremal Black Holes in Higher Dimensions. Commun. Math. Phys. 291, 443–471 (2009). https://doi.org/10.1007/s00220-009-0841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0841-1

Keywords

Navigation