Skip to main content
Log in

Uniqueness Theorem for 5-Dimensional Black Holes with Two Axial Killing Fields

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that two stationary, asymptotically flat vacuum black holes in 5 dimensions with two commuting axial symmetries are identical if and only if their masses, angular momenta, and their “interval structures” coincide. We also show that the horizon must be topologically either a 3-sphere, a ring, or a Lens-space. Our argument is a generalization of constructions of Morisawa and Ida (based in turn on key work of Maison) who considered the spherical case, combined with basic arguments concerning the nature of the factor manifold of symmetry orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams C.C.: The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. W. H. Freeman, New York (1994)

    MATH  Google Scholar 

  2. Bunting, G.L.: Proof of the uniqueness conjecture for black holes. PhD Thesis, Univ. of New England, Armidale, N.S.W., 1983

  3. Carter B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331–333 (1971)

    Article  ADS  Google Scholar 

  4. Cho Y.M., Freund P.G.O.: Non-Abelian gauge fields as Nambu-Goldstone fields. Phys. Rev. D 12, 1711 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chruściel P.T.: On rigidity of analytic black holes. Commun. Math. Phys. 189, 1–7 (1997)

    Article  MATH  ADS  Google Scholar 

  6. Emparan R., Reall H.S.: A rotating black ring in five dimensions. Phys. Rev. Lett. 88, 101101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Emparan R., Reall H.S.: Generalized Weyl solutions. Phys. Rev. D 65, 084025 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Friedrich H., Racz I., Wald R.M.: On the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon, Commun. Math. Phys. 204, 691–707 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Galloway G.J., Schleich K., Witt D.M., Woolgar E.: Topological censorship and higher genus black holes. Phys. Rev. D 60, 104039 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Galloway G.J., Schleich K., Witt D., Woolgar E.: The AdS/CFT correspondence conjecture and topological censorship. Phys. Lett. B 505, 255 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Galloway G.J., Schoen R.: A Generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Gibbons G.W., Ida D., Shiromizu T.: Uniqueness and non-uniqueness of static black holes in higher dimensions. Phys. Rev. Lett. 89, 041101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. Harmark T., Olesen P.: On the structure of stationary and axisymmetric metrics. Phys. Rev. D 72, 124017 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Harmark T.: Stationary and axisymmetric solutions of higher-dimensional general relativity. Phys. Rev. D 70, 124002 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hawking S.W.: Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hawking S.W., Ellis G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  17. Heusler M.: Black hole uniqueness theorems. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  18. Hollands S., Ishibashi A., Wald R.M.: A higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271, 699 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Hollands S., Ishibashi A.: Asymptotic flatness and Bondi energy in higher dimensional gravity. J. Math. Phys. 46, 022503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hollands, S., Yazadjiev, S., Work in progress

  21. Ishihara H., Kimura M., Masuno K., Tomizawa S.: Black holes on Euguchi-Hanson space in five-dimensional Einstein Maxwell theory. Phys. Rev. D 74, 047501 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. Israel W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967)

    Article  ADS  Google Scholar 

  23. Kerner R.: Generalization of Kaluza-Klein theory for an arbitrary non-abelian gauge group. Ann. Inst. H. Poincare 9, 143 (1968)

    MathSciNet  Google Scholar 

  24. Kobayshi S., Nomizu K.: Foundations of Differential Geometry I. Wiley, New York (1969)

    Google Scholar 

  25. Maison D.: Ehlers-Harrison-type Transformations for Jordan’s extended theory of graviation. Gen. Rel. Grav. 10, 717 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  26. Morisawa Y., Ida D.: A boundary value problem for five-dimensional stationary black holes, Phys. Rev. D 69, 124005 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  27. Mazur P.O.: Proof of uniqueness of the Kerr-Newman black hole solution. J. Phys. A 15, 3173–3180 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  28. Moncrief V., Isenberg J.: Symmetries of cosmological Cauchy horizons. Commun. Math. Phys. 89, 387–413 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Myers R.C., Perry M.J.: Black holes in higher dimensional space-times. Annals Phys. 172, 304 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Racz I.: On further generalization of the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon. Class. Quant. Grav. 17, 153 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Robinson D.C.: Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905–906 (1975)

    Article  ADS  Google Scholar 

  32. Sudarsky D., Wald R.M.: Extrema of mass, stationarity, and staticity, and solutions to the Einstein Yang-Mills equations. Phys. Rev. D 46, 1453–1474 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  33. Wald R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  34. Weinstein G.: On rotating black holes in equilibrium in general relativity. Commun. Pure Appl. Math. 43, 903 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hollands.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollands, S., Yazadjiev, S. Uniqueness Theorem for 5-Dimensional Black Holes with Two Axial Killing Fields. Commun. Math. Phys. 283, 749–768 (2008). https://doi.org/10.1007/s00220-008-0516-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0516-3

Keywords

Navigation