Skip to main content

Effectiveness of a combined ethanol–aqueous extract of alga Cystoseira compressa for the quality enhancement of a chilled fatty fish species


Seaweeds have attracted an increasing attention as a new source for bioactive compounds, these include preservative compounds. This study is a first attempt to employ alga Cystoseira compressa for the preservation of chilled fish. For it, a combined ethanol–aqueous extract of this alga was included in the icing system and employed as chilling medium for the storage of horse mackerel (Trachurus trachurus) for 11 days. On the basis of the microbial groups (aerobes, psychrotrophs, proteolytic, lipolytic and Enterobacteriaceae bacteria) assessed, an inhibitory effect (p < 0.05) on microbial activity in horse mackerel muscle was observed as a result of including the alga extract in the icing medium; such preservative effect was also proved by chemical determinations related to microbial activity (pH and trimethylamine values). Additionally, a significant decrease (p < 0.05) of lipid hydrolysis (free fatty acids formation) and oxidation (fluorescent compounds formation) in fish was also observed as a result of the presence of C. compressa extracts in the icing medium. The icing medium proposed in this work (i.e., the combination of ethanolic and aqueous extracts of C. compressa) may constitute a promising strategy to the application of natural algae extracts for fatty fish storage and enhance quality retention during commercialisation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Dembitsky VM, Maoka T (2007) Allenic and cumulenic lipids. Prog Lipid Res 46:328–375

    CAS  Article  Google Scholar 

  2. 2.

    Halldorsdóttir S, Sveinsdóttir H, Gudmundsdóttir A, Thorkelsson G, Kristinsson H (2014) High quality fish protein hydrolysates prepared from by-product material with Fucus vesiculosus extract. J Funct Foods 9:10–17

    Article  Google Scholar 

  3. 3.

    Maharana D, Das PB, Verlecar XN, Pise NM, Gauns M (2015) Oxidative stress tolerance in intertidal red seaweed Hypnea musciformis (Wulfen) in relation to environmental components. Environ Sci Pollut Res Int 22:18741–18749

    CAS  Article  Google Scholar 

  4. 4.

    Smit A (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262

    CAS  Article  Google Scholar 

  5. 5.

    Airanthi MK, Hosokawa M, Miyashita K (2011) Comparative antioxidant activity of edible Japanese brown seaweeds. J Food Sci 76:C104–C111

    Article  Google Scholar 

  6. 6.

    Wang T, Ólafsdóttir G, Jónsdóttir R, Kristinsson HG, Johannsson R (2011) Functional nutraceutical ingredients from marine macroalgae. In: Alasalvar C, Shahidi F, Miyashita K, Wanasundara U (eds) Handbook of seafood quality, safety and health applications, 1st edn. Blackwell, Hoboken, pp 509–521

    Google Scholar 

  7. 7.

    Sandsdalen E, Haug T, Stensvag K, Styrvold O (2003) The antibacterial effect of a polyhydroxylated fucophlorethol from the marine brown alga, Fucus vesiculosus. World J Microb Biotechnol 19:777–782

    CAS  Article  Google Scholar 

  8. 8.

    Zubia M, Fabre MS, Kerjean V, Le Lann K, Stiger-Pouvreau V, Fauchon M, Deslandes E (2009) Antioxidant and antitumoral activities of some Phaeophyta from Britany coasts. Food Chem 116:693–701

    CAS  Article  Google Scholar 

  9. 9.

    Gupta S, Abu-Ghannam N (2011) Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol 22:315–326

    CAS  Article  Google Scholar 

  10. 10.

    Zou Y, Qian ZJ, Li Y, Kim MM, Lee SH, Kim SK (2008) Antioxidant effects of phlorotannins isolated from Ishige okamurae in free radical mediated oxidative systems. J Agric Food Chem 56:7001–7009

    CAS  Article  Google Scholar 

  11. 11.

    Custódio L, Silvestre L, Rocha MI, Rodrigues MJ, Vizetto-Duarte C, Pereira H, Barreira L, Varela J (2016) Methanol extracts from Cystoseira tamariscifolia and Cystoseira nodicaulis are able to inhibit cholinesterases and protect a human dopaminergic cell line from hydrogen peroxide-induced cytotoxicity. Pharm Biol 54:1687–1696

    Article  Google Scholar 

  12. 12.

    Farvin K, Jacobsen C (2013) Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem 138:1670–1681

    Article  Google Scholar 

  13. 13.

    Tierney M, Smyth T, Rai D, Soler-Vila A, Croft A, Brunton N (2013) Enrichment of phenol contents and antioxidant activities of Irish brown macroalgae using food-friendly techniques based on polarity and molecular size. Food Chem 139:753–761

    CAS  Article  Google Scholar 

  14. 14.

    Babakhani A, Farvin K, Jacobsen C (2016) Antioxidative effect of seaweed extracts in chilled storage of minced Atlantic mackerel (Scomber scombrus): effect on lipid and protein oxidation. Food Bioproc Technol 9:352–364

    CAS  Article  Google Scholar 

  15. 15.

    Athukorala Y, Lee KW, Song C, Ahn CB, Shin TS, Cha YJ, Shahidi F, Jeon YJ (2003) Potential antioxidant activity of marine red alga Grateloupia filicina extracts. J Food Lipids 10:251–265

    CAS  Article  Google Scholar 

  16. 16.

    Haddar A, Sellimi S, Ghannouchi R, Martínez Álvarez O, Nasri M, Bougatef A (2012) Functional, antioxidant and film-forming properties of tuna-skin gelatin with a brown algae extract. Int J Biol Macrom 51:477–483

    CAS  Article  Google Scholar 

  17. 17.

    Pereira L, Amado A, Critchley A, van de Velde F, Ribeiro-Claro P (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll 23:1903–1909

    CAS  Article  Google Scholar 

  18. 18.

    Kuda T, Ikemori T (2009) Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chem 112:575–581

    CAS  Article  Google Scholar 

  19. 19.

    Barros-Velázquez J, Miranda JM, Ezquerra-Brauer JM, Aubourg SP (2016) Impact of icing systems with aqueous, ethanolic and ethanolic-aqueous extracts of alga Fucus spiralis on microbial and biochemical quality of chilled hake (Merluccius merluccius). Int J Food Sci Technol 51:2081–2089

    Article  Google Scholar 

  20. 20.

    Colombo ML, Risé P, Giavarini F, de Angelis L, Galli C, Bolis CL (2006) Marine macroalgae as source of polyunsaturated fatty acids. Plant Food Hum Nutr 61:67–72

    CAS  Article  Google Scholar 

  21. 21.

    Silva G, Pereira RB, Valentão P, Andrade PB, Sousa C (2013) Distinct fatty acid profile of ten brown macroalgae. Braz J Pharmacogn 23:608–613

    CAS  Article  Google Scholar 

  22. 22.

    Jun JY, Nakajima S, Yamazaki K, Kawai Y, Yasui H, Konishi Y (2015) Isolation of antimicrobial agent from marine algae Cystoseira hakodatensis. Int J Food Sci Technol 50:871–877

    CAS  Article  Google Scholar 

  23. 23.

    Andrade P, Barbosa M, Pedro Matos R, Lopes G, Vinholes J, Mouga T, Valentão P (2013) Valuable compounds in macroalgae extracts. Food Chem 138:1819–1828

    CAS  Article  Google Scholar 

  24. 24.

    Cabioc’h J, Floch JY, Le Toquin A, Boudouresque CF, Meinesz A, Verlaque M (2006) Guide des algues des mers d’Europe, Manche, Atlantique, Méditerranée, Les guides du naturaliste. Delachaux and Niestle, Paris

    Google Scholar 

  25. 25.

    Vicetto-Duarte C, Pereira H, Sousa CB, Rauter A, Albericio F, Custódio L, Barreira L, Varela J (2015) Fatty acid profile of different species of algae of the Cystoseira genus: a nutraceutical perspective. Nat Prod Res 29:1264–1270

    Article  Google Scholar 

  26. 26.

    Guiry MD, Guiry GM (2017) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Accessed 5 Jan 2017

  27. 27.

    Miranda J, Trigo M, Barros-Velázquez J, Aubourg SP (2016) Effect of an icing medium containing the alga Fucus spiralis on the microbiological activity and lipid oxidation in chilled megrim (Lepidorhombus whiffiagonis). Food Cont 59:290–297

    CAS  Article  Google Scholar 

  28. 28.

    Ben-Gigirey B, Baptista Vieites, de Sousa J, Villa T, Barros-Velázquez J (1998) Changes in biogenic amines and microbiological analysis in albacore (Thunnus alalunga) muscle during frozen storage. J Food Prot 61:608–615

    CAS  Article  Google Scholar 

  29. 29.

    Ben-Gigirey B, Baptista Vieites, de Sousa J, Villa T, Barros-Velázquez J (1999) Histamine and cadaverine production by bacteria isolated from fresh and frozen albacore (Thunnus alalunga). J Food Prot 62:933–939

    CAS  Article  Google Scholar 

  30. 30.

    Ben-Gigirey B, Baptista Vieites, de Sousa J, Villa T, Barros-Velázquez J (2000) Characterization of biogenic amine-producing Stenotrophomonas maltophilia strains isolated from white muscle of fresh and frozen albacore tuna. Int J Food Microb 57:19–31

    CAS  Article  Google Scholar 

  31. 31.

    Tozawa H, Erokibara K, Amano K (1971) Proposed modification of Dyer’s method for trimethylamine determination in codfish. In: Kreuzer R (ed) Fish inspection and quality control. Fishing News Books Ltd, London, pp 187–190

    Google Scholar 

  32. 32.

    Bligh E, Dyer W (1959) A rapid method of total extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Article  Google Scholar 

  33. 33.

    Lowry R, Tinsley I (1976) Rapid colorimetric determination of free fatty acids. J Am Oil Chem Soc 53:470–472

    CAS  Article  Google Scholar 

  34. 34.

    Chapman R, McKay J (1949) The estimation of peroxides in fats and oils by the ferric thiocyanate method. J Am Oil Chem Soc 26:360–363

    CAS  Article  Google Scholar 

  35. 35.

    Vyncke W (1970) Direct determination of the thiobarbituric acid value in trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen Anstrichm 72:1084–1087

    CAS  Article  Google Scholar 

  36. 36.

    Aubourg SP (2000) Assessment of antioxidant effectiveness on thermally treated marine lipids by fluorescence detection. Eur Food Res Technol 211:310–315

    CAS  Article  Google Scholar 

  37. 37.

    Fleurence J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M, García-Bueno N, Jaouen P (2012) What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci Technol 27:57–61

    CAS  Article  Google Scholar 

  38. 38.

    Campos C, Gliemmo M, Aubourg SP, Barros-Velázquez J (2012) Novel technologies for the preservation of chilled aquatic food products. In: McElhatton A, Amaral Sobral P (eds) Novel technologies in food science, chapter 13. Springer, New York, pp 299–323

    Chapter  Google Scholar 

Download references


Thanks to Department of Biology, Institute of Exact Sciences and Natural and Life Sciences, University Centre Ahmed Zabana of Relizane (Algeria) for the financial support of the internship of Mrs. Hanane Oucif. The authors thank Mr. Marcos Trigo and Mrs. Yanice Toro for their excellent technical assistance. This work was supported by the Consejo Superior de Investigaciones Científicas (CSIC, Spain; Project PIE 201370E001).

Author information



Corresponding author

Correspondence to Santiago P. Aubourg.

Ethics declarations

Conflict of interest


Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oucif, H., Miranda, J.M., Mehidi, S.A. et al. Effectiveness of a combined ethanol–aqueous extract of alga Cystoseira compressa for the quality enhancement of a chilled fatty fish species. Eur Food Res Technol 244, 291–299 (2018).

Download citation


  • Cystoseira compressa
  • Ethanolic and aqueous extracts
  • Trachurus trachurus
  • Chilling
  • Antimicrobial activity
  • Lipid damage