Skip to main content
Log in

Marine Macroalgae as Sources of Polyunsaturated Fatty Acids

  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Algae from cold water (Canada) and warm water (China) were analysed for the total lipid content, and for their fatty acid (FA) composition and content. The major findings are that fatty acids (FA) from Canadian algae are generally richer in polyunsaturated FA (PUFA), with a higher n–3/n–6 FA ratio, and a higher degree of total unsaturation. The C 18:4 FA (stearidonic acid, morotic acid as synonym) was detected in greater amounts in cold water samples. The high levels of total PUFA, and especially of n–3 FA in Canadian algae, suggests possible utilization for nutritional purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  1. Sardesai VM (1992) Nutritional role of polyunsaturated fatty acids. J Nutr Biochem 3: 154–166.

    Article  CAS  Google Scholar 

  2. Zhukova NV, Aizdaicher NA (1995) Fatty acid composition of 15 marine microalgae. Phytochemistry 39: 351–356.

    Article  CAS  Google Scholar 

  3. Vaskovsky VE, Khotimchenko SV, Xia B, Hefang, L (1996) Polar lipids and fatty acids of some marine macrophytes from the yellow sea. Phytochemistry 42: 1347–1356.

    Article  CAS  Google Scholar 

  4. Dyerberg J, Bang HO, Stoffersen E, Moncada S, Vane J (1978) Eicosapentanoic acid and prevention of thrombosis and atherosclerosis. Lancet 2(8081): 117–119.

    Article  CAS  Google Scholar 

  5. Lee T, Hoover RL, Williams JD, Sperling RJ, Ravalese J, Spur BW, et al. (1989) Effect of dietary eicosapentanoic and docohexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. New Engl J Med 312: 1217– 1224.

    Article  Google Scholar 

  6. Phillipson BE, Rothrock DW, Connor WE, Harris WS, Illingworth DR (1985) Reduction of plasma lipids, lipoproteins, and apoproteins by dietary fish oil in patients with hypertriglyceridemia. New Engl J Med 313: 1210–1214.

    Article  Google Scholar 

  7. Schmidt EB, Kristensen SD, De Caterna R, Illingworth DR (1993) The effects of n–3 fatty acids on plasma lipids and lipoproteins and other cardiovascular risk factors in patients with hyperlipidemia. Atherosclerosis 103: 107–121.

    Article  CAS  Google Scholar 

  8. Wu D, Meydani SN, Meydani M, Hayek MG, Huth P, Nicolosi RJ (1996) Immunologic effects of marine- and plant-derived n–3 polyunsaturated fatty acids in nonhuman primates. Am J Clin Nutr 62: 273–280.

    Google Scholar 

  9. Daviglus ML, Stamler J, Orencia AJ, Dyer AR, Liu K, Greenland P, Walsh MK, Morris D, Shekelle RB (1997). Fish consumption and the 30-year risk of fatal myocardial infarction. New Engl J Med 336: 1046–1053.

    Article  CAS  Google Scholar 

  10. Singh RB, Niaz MA, Sharma JP, Kumar R, Rastogi V, Moshiri M (1997) Randomized double-blind, placebo-controlled trial of fish oil and mustard oil in patients with supsected acute myocardial infarction: The Indian experiment of infarct survival. Cardiovasc Drug Ther 11: 485–491.

    Article  CAS  Google Scholar 

  11. Valagussa F, Franzosi MG, Geraci E, Mininni N, Nicolosi GL, Santini M, Tavazzi L, Vecchio C (1999) Dietary supplementation with n–3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Lancet 354: 447–455.

    Article  CAS  Google Scholar 

  12. Von Schacky C, Angerer P, Kothny W, Theisen K, Mudra H (1999) The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized double-blind, placebo-controlled trial. Am Intern Med 130: 554–562.

    CAS  Google Scholar 

  13. Harris WS, Lu G, Rambjør GS, Wålen AI, Ontko JA, Cheng Q, Windsor SL (1997) Influence of n–3 fatty acid supplementation on the endogenous activities of plasma lipases. Am J Clin Nutr 66: 254–260.

    CAS  Google Scholar 

  14. Leaf A, Kang JX (1996). Prevention of cardiac sudden death by n–3 fatty acids: a review of the evidence. J Intern Med 240: 5–12.

    Article  CAS  Google Scholar 

  15. Albert CM, Hennekens CJ, O’Donnell CJ, Ajani UA, Carey VJ, Willett WC, Ruskin JN, Manson JE (1998) Fish consumption and risk of sudden cardiac death. JAMA 279: 3–28.

    Google Scholar 

  16. Guallar E, Aro A, Jiménez FJ, Martin-Moreno JM, Salminen I, van’t Veer P, Kardinaal AFM, Gomez-Aracena J, Martin BC, Kohlmeier L, Kark JD, Mazaev VP, Ringstad J, Guillen J, Riemersma RA, Huttunen JK, Thamm M, Kok FJ (1999) Omega-3 fatty acids in adipose tissue and risk of myocardial infarction: the EURAMIC Study. Atheroscler, Thromb, Vasc Biol 19: 111–1118.

    Google Scholar 

  17. Ficth Haumann B (1998) Alternative sources for n–3 fatty acids. INFORM 9: 1108–1119.

    Google Scholar 

  18. Fleurence J, Gutbier G, Mabeau S, Leray C (1994) Fatty acids from 11 marine macroalgae of the French Brittany coast. J Appl Phycol 6: 527–532.

    Article  CAS  Google Scholar 

  19. Carballeira NM, Sostre A, Ballantine DL (1999) The fatty acid composition of tropical marine algae of the genus Halimeda (Chlorophyta). Botanica Marina 42: 383–387.

    Article  CAS  Google Scholar 

  20. Kaneniwa M, Kaminishi Y, Kunimoto M (1998) Fatty acid compositions of nineteen species of marine algae mainly obtained from the Yamaguchi Prefecture coast. J Shimonoseki University Fisheries 46: 191–195.

    CAS  Google Scholar 

  21. Carvalho A, Malcata FX (2000) Effect of culture media on production of polyunsaturated fatty acids by Pavlova lutheri. Cryptogamie Algologie 21: 59–71.

    Article  Google Scholar 

  22. Sanina NM, Goncharova SN, Kostetsky EY (2004) Fatty acid composition of individual polar lipid classes from marine macrophytes. Phytochemistry 65: 721–750.

    Article  CAS  Google Scholar 

  23. Herber SM, Van Elswyck ME (1996) Dietary marine algae promotes efficient deposition of n–3 fatty acids for the production of enriched shell eggs. Poult Sci 75: 1501– 1507.

    CAS  Google Scholar 

  24. Folch J, Less M Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497–509.

    CAS  Google Scholar 

  25. Rouser G, Kritcheusky G, Yamamoto A, Simon G, Galli C, Bauman AJ (1969). Diethylamminoethyl and triethylamminoethyl cellulose column chromatography procedures for phospholipids, glycolipids and pigments. Methods Enzymol 14: 272– 317.

    Article  CAS  Google Scholar 

  26. Galella G, Marangoni F, Risè P, Colombo C, Galli G. Galli C (1993). n–6 and n–3 fatty acid accumulation in thp-1 cell phospholipids. Biochimica et Biophysica Acta 1169: 280–290.

    CAS  Google Scholar 

  27. Khotimchenko SV, Vaskovsky VE, Titlyanova TV (2002) Fatty acids of marine algae from the Pacific coast of North California. Botanica Marina 45: 17–22.

    Article  CAS  Google Scholar 

  28. Pietra F (2002). Biodiversity and Natural Product Diversity. Tetrahedron Organic Chemistry Series, vol 21, Pergamon Press, Oxford.

    Book  Google Scholar 

  29. Bigogno C, Khozin-Goldberg I, Boussiba S, Vonslack A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60: 497–503.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. COLOMBO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

COLOMBO, M.L., RISÈ, P., GIAVARINI, F. et al. Marine Macroalgae as Sources of Polyunsaturated Fatty Acids. Plant Foods Hum Nutr 61, 64–69 (2006). https://doi.org/10.1007/s11130-006-0015-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-006-0015-7

Key words:

Navigation