Skip to main content

Advertisement

Log in

Gold nanomaterials: important vectors in biosensing of breast cancer biomarkers

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is one of the most common malignant tumors in women worldwide, and its incidence is increasing every year. Early diagnosis and treatment are critical to improve the curability and prognosis of patients. However, existing detection methods often suffer from insufficient sensitivity and specificity, which limits their clinical application. Fortunately, the rapid development of nanotechnology offers new possibilities for diagnosing BC. For example, the unique physicochemical properties of gold nanomaterials (Au NMs), such as fascinating optical properties and quantum size effect, along with excellent biocompatibility and modifiability, enable them to manifest great potential in the field of biosensing, especially in the detection of BC biomarkers. Through fine surface modification and functionalization, Au NMs can accurately bind to specific antibodies, nucleic acids, and other biomolecules, thus achieving sensitive and precise detection of specific biomarkers. Here, we focus on the research progress of Au NMs as a key biosensing vector in BC biomarker detection. From four major perspectives of early diagnosis, prognostic evaluation, risk prediction, and bioimaging applications, we have thoroughly analyzed the broad application of Au NMs in BC biomarker detection and prospectively addressed its possible future trends. We hope this review will provide more comprehensive ideas for future researchers and promote the further development of this field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6

Similar content being viewed by others

References

  1. Lei SY, Zheng RS, Zhang SW, Chen R, Wang SM, Sun KX, Zeng HM, Wei WQ, He J. Breast cancer incidence and mortality in women in China: temporal trends and projections to 2030. Cancer Biol Med. 2021;18(3):900–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA-Cancer J Clin. 2023;73(1):17–48.

    Article  PubMed  Google Scholar 

  3. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F. Breast Cancer Nat Rev Dis Primers. 2019;5(1):67.

    Article  Google Scholar 

  4. Ahmad A. Breast Cancer Statistics: Recent Trends. In: Ahmad A, editor. Breast Cancer Metastasis and Drug Resistance: Challenges and Progress. 2nd Edition. Cham: Springer International Publishing Ag; 2019. p 1–7. 1152

  5. Ponde NF, Zardavas D, Piccart M. Progress in adjuvant systemic therapy for breast cancer. Nat Rev Clin Oncol. 2019;16(1):27–44.

    Article  CAS  PubMed  Google Scholar 

  6. Hampel H, O’Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R, Blennow K. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol. 2018;14(11):639–52.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jayanthi V, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron. 2017;91:15–23.

    Article  CAS  PubMed  Google Scholar 

  8. Tarighati E, Keivan H, Mahani H. A review of prognostic and predictive biomarkers in breast cancer. Clin Exper Med. 2023;23(1):1–16.

    CAS  Google Scholar 

  9. Goossens N, Nakagawa S, Sun XC, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4(3):256–69.

    CAS  PubMed  Google Scholar 

  10. Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martinez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, Tamez-Pena JG, Trevino V. SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis. PLoS One. 2013;8(9):e74250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Biju V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev. 2014;43(3):744–64.

    Article  CAS  PubMed  Google Scholar 

  12. Wang ZJ, Li Q, Tan LL, Liu CG, Shang L. Metal-organic frameworks-mediated assembly of gold nanoclusters for sensing applications. J Anal Test. 2022;6(2):163–77.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ni SQ, Liu YZ, Tong SF, Li SH, Song XR. Emerging NIR-II luminescent gold nanoclusters for in vivo bioimaging. J Anal Test. 2023;7(3):260–71.

    Article  Google Scholar 

  14. Liu L, Jiang H, Wang XM. Functionalized gold nanomaterials as biomimetic nanozymes and biosensing actuators. Trac-Trends Anal Chem. 2021;143:116376.

    Article  CAS  Google Scholar 

  15. Li H, Zhao C, Wei SN, Liu XX, Li J, Wang J. A pH-regulated colorimetric sensor array for discrimination of biothiols based on two different-sized β-cyclodextrin-functionalized AuNPs. J Anal Test. 2023;7(2):101–9.

    Article  Google Scholar 

  16. Liu XH, Zhang QW, Knoll WG, Liedberg B, Wang Y. Rational design of functional peptide-gold hybrid nanomaterials for molecular interactions. Adv Mater. 2020;32(37):2000866.

    Article  CAS  Google Scholar 

  17. Nicolosi P, Ledet E, Yang S, Michalski S, Freschi B, O’Leary E, Esplin ED, Nussbaum RL, Sartor O. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 2019;5(4):523–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, Doubeni CA, Epling JW, Kubik M, Landefeld CS, Mangione CM, Pbert L, Silverstein M, Simon MA, Tseng CW, Wong JB, Force USPST. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer US preventive services task force recommendation statement. JAMA-J Am Med Assoc. 2019;322(7):652–65.

    Article  Google Scholar 

  19. Winters S, Martin C, Murphy D, Shokar NK. Breast cancer epidemiology, prevention, and screening. In: Lakshmanaswamy R, editor. Approaches to Understanding Breast Cancer. San Diego: Elsevier Academic Press Inc; 2017; Vol. 151, p 1–32.

  20. Choi JH, Lim J, Shin M, Paek SH, Choi JW. CRISPR-Cas12a-based nucleic acid amplification-free DNA biosensor via Au nanoparticle-assisted metal-enhanced fluorescence and colorimetric analysis. Nano Lett. 2021;21(1):693–9.

    Article  CAS  PubMed  Google Scholar 

  21. Zhong D, Yang KC, Wang YY, Yang XM. Dual-channel sensing strategy based on gold nanoparticles cooperating with carbon dots and hairpin structure for assaying RNA and DNA. Talanta. 2017;175:217–23.

    Article  CAS  PubMed  Google Scholar 

  22. Wang WT, Fan XJ, Xu SH, Davis JJ, Luo XL. Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosens Bioelectron. 2015;71:51–6.

    Article  CAS  PubMed  Google Scholar 

  23. Xu H, Wang L, Ye H, Yu L, Zhu X, Lin Z, Wu G, Li X, Liu X, Chen G. An ultrasensitive electrochemical impedance sensor for a special BRCA1 breast cancer gene sequence based on lambda exonuclease assisted target recycling amplification. Chem Communic. 2012;48(51):6390–2.

    Article  CAS  Google Scholar 

  24. Li J, Song SP, Li D, Su Y, Huang Q, Zhao Y, Fan CH. Multi-functional crosslinked Au nanoaggregates for the amplified optical DNA detection. Biosens Bioelectron. 2009;24(11):3311–5.

    Article  CAS  PubMed  Google Scholar 

  25. Liang ZH, Nie YX, Zhang X, Wang PL, Ma Q. Multiplex electrochemiluminescence polarization assay based on the surface plasmon coupling effect of Au NPs and Ag@Au NPs. Anal Chem. 2021;93(20):7491–8.

    Article  CAS  PubMed  Google Scholar 

  26. Chen LH, Liu X, Chen CF. Impedimetric biosensor modified with hydrophilic material of tannic acid/polyethylene glycol and dopamine-assisted deposition for detection of breast cancer-related BRCA1 gene. J Electroanal Chem. 2017;791:204–10.

    Article  CAS  Google Scholar 

  27. Wu L, Qu XG. Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev. 2015;44(10):2963–97.

    Article  CAS  PubMed  Google Scholar 

  28. Wang AJ, Zhu XY, Chen Y, Luo XL, Xue YD, Feng JJ. Ultrasensitive label-free electrochemical immunoassay of carbohydrate antigen 15–3 using dendritic Au@Pt nanocrystals/ferrocene-grafted-chitosan for efficient signal amplification. Sens Actuator B-Chem. 2019;292:164–70.

    Article  CAS  Google Scholar 

  29. Neto JLB, Martins TS, Machado SAS, Oliveira ON. Enhanced photocatalysis on graphitic carbon nitride sensitized with gold nanoparticles for photoelectrochemical immunosensors. Appl Surf Sci. 2022;606:154952.

    Article  Google Scholar 

  30. Jiang XY, Wang HJ, Yuan R, Chai YQ. Sensitive electrochemiluminescence detection for CA15-3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods. Biosens Bioelectron. 2015;63:33–8.

    Article  CAS  PubMed  Google Scholar 

  31. Chen SN, Zhao Q, Zhang LY, Wang LQ, Zeng YL, Huang HW. Combined detection of breast cancer biomarkers based on plasmonic sensor of gold nanorods. Sens Actuator B-Chem. 2015;221:1391–7.

    Article  CAS  Google Scholar 

  32. Mohammadi S, Salimi A, Hamd-Ghadareh S, Fathi F, Soleimani F. A FRET immunosensor for sensitive detection of CA 15–3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimeraptamer as donor-acceptor pair. Anal Biochem. 2018;557:18–26.

    Article  CAS  PubMed  Google Scholar 

  33. Huang HW, Zhou YA, Zhao QA, Zhang LY, Liu LF, Xia XD, Yi SJ. A highly sensitive EDTA-based senor for detection of disease biomarker and drug. Sens Actuator B-Chem. 2017;249:478–85.

    Article  CAS  Google Scholar 

  34. Andre F, Ismaila N, Allison KH, Barlow WE, Collyar DE, Damodaran S, Henry NL, Jhaveri K, Kalinsky K, Kuderer NM, Litvak A, Mayer EL, Pusztai L, Raab R, Wolff AC, Stearns V. Biomarkers for adjuvant endocrine and chemotherapy in early-stage breast cancer: ASCO guideline update. J Clin Oncol. 2022;40(16):1816–37.

    Article  CAS  PubMed  Google Scholar 

  35. Qin XL, Xu AG, Wang LC, Liu L, Chao L, He F, Tan YM, Chen C, Xie QJ. In situ microliter-droplet anodic stripping voltammetry of copper stained on the gold label after galvanic replacement reaction enlargement for ultrasensitive immunoassay of proteins. Biosens Bioelectron. 2016;79:914–21.

    Article  CAS  PubMed  Google Scholar 

  36. Hamd-Ghadareh S, Salimi A, Fathi F, Bahrami S. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens Bioelectron. 2017;96:308–16.

    Article  CAS  PubMed  Google Scholar 

  37. Chen M, Song Z, Yang XQ, Song ZL, Luo XL. Antifouling peptides combined with recognizing DNA probes for ultralow fouling electrochemical detection of cancer biomarkers in human bodily fluids. Biosens Bioelectron. 2022;206:114162.

    Article  CAS  PubMed  Google Scholar 

  38. Li JF, Liu L, Ai YJ, Liu Y, Sun HB, Liang QL. Self-polymerized dopamine-decorated Au NPs and coordinated with Fe-MOF as a dual binding sites and dual signal-amplifying electrochemical aptasensor for the detection of CEA. ACS Appl Mater Interfaces. 2020;12(5):5500–10.

    Article  CAS  PubMed  Google Scholar 

  39. Liao XC, Wang X, Sun CH, Chen SY, Zhang MM, Mei LS, Qi Y, Hong CL. Ratiometric electrochemical immunosensor triggered by an advanced oxidation process for the ultrasensitive detection of carcinoembryonic antigen. Sens Actuator B-Chem. 2022;362:131804.

    Article  CAS  Google Scholar 

  40. Zhang CY, Zhang S, Jia YL, Li YY, Wang P, Liu Q, Xu Z, Li XJ, Dong YH. Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of Ag NPs@CS spaced Hemin/rGO. Biosens Bioelectron. 2019;126:785–91.

    Article  CAS  PubMed  Google Scholar 

  41. Song XM, Gao HH, Yuan R, Xiang Y. Trimetallic nanoparticle-decorated MXene nanosheets for catalytic electrochemical detection of carcinoembryonic antigen via Exo III-aided dual recycling amplifications. Sens Actuator B-Chem. 2022;359:131617.

    Article  CAS  Google Scholar 

  42. Huang D, Wang L, Zhan Y, Zou LN, Ye BX. Photoelectrochemical biosensor for CEA detection based on SnS2-GR with multiple quenching effects of Au@CuS-GR. Biosens Bioelectron. 2019;140:183–90.

    Article  Google Scholar 

  43. Zhou YT, Lv SZ, Wang XY, Kong LY, Bi S. Biometric photoelectrochemical-visual multimodal biosensor based on 3D hollow HCdS@Au nanospheres coupled with target-induced ion exchange reaction for antigen detection. Anal Chem. 2022;94(41):14492–501.

    Article  CAS  PubMed  Google Scholar 

  44. Bordbar MM, Samadinia H, Sheini A, Halabian R, Parvin S, Ghanei M, Bagheri H. A colorimetric electronic tongue based on bi-functionalized AuNPs for fingerprint detection of cancer markers. Sens Actuator B-Chem. 2022;368:132170.

    Article  CAS  Google Scholar 

  45. Gao ZQ, Shao SK, Gao WW, Tang DY, Tang DP, Zou SL, Kim MJ, Xia XH. Morphology-invariant metallic nanoparticles with tunable plasmonic properties. ACS Nano. 2021;15(2):2428–38.

    Article  CAS  PubMed  Google Scholar 

  46. Carneiro M, Sousa-Castillo A, Correa-Duarte MA, Sales MGF. Dual biorecognition by combining molecularly-imprinted polymer and antibody in SERS detection Application to carcinoembryonic antigen. Biosens Bioelectron. 2019;146:111761.

    Article  CAS  PubMed  Google Scholar 

  47. Lin XL, Wang YY, Wang LN, Lu YD, Li J, Lu DC, Zhou T, Huang ZF, Huang J, Huang HF, Qiu SF, Chen R, Lin D, Feng SY. Interference-free and high precision biosensor based on surface enhanced Raman spectroscopy integrated with surface molecularly imprinted polymer technology for tumor biomarker detection in human blood. Biosens Bioelectron. 2019;143:111599.

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Luo JP, Liu JT, Sun S, Xiong Y, Ma YY, Yan S, Yang Y, Yin HB, Cai XX. Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens Bioelectron. 2019;136:84–90.

    Article  CAS  PubMed  Google Scholar 

  49. Li LH, Zhang WZ, Chen HC, Zhao ZG, Wang MF, Chen JX. Visual and electrochemical determination of breast cancer marker CA15-3 based on etching of Au@Ag core/shell nanoparticles. Int J Electrochem Sci. 2023;18(5):100123.

    Article  CAS  Google Scholar 

  50. Martins TS, Bott-Neto JL, Oliveira ON, Machado SAS. A sandwich-type electrochemical immunosensor based on Au-rGO composite for CA15-3 tumor marker detection. Microchim Acta. 2022;189(1):38.

    Article  CAS  Google Scholar 

  51. Kuntamung K, Jakmunee J, Ounnunkad K. A label-free multiplex electrochemical biosensor for the detection of three breast cancer biomarker proteins employing dye/metal ion-loaded and antibody-conjugated polyethyleneimine-gold nanoparticles. J Mat Chem B. 2021;9(33):6576–85.

    Article  CAS  Google Scholar 

  52. Hasanzadeh M, Tagi S, Solhi E, Shadjou N, Jouyban A, Mokhtarzadeh A. Immunosensing of breast cancer prognostic marker in adenocarcinoma cell lysates and unprocessed human plasma samples using gold nanostructure coated on organic substrate. Int J Biol Macromol. 2018;118:1082–9.

    Article  CAS  PubMed  Google Scholar 

  53. Torati SR, Kasturi K, Lim B, Kim C. Hierarchical gold nanostructures modified electrode for electrochemical detection of cancer antigen CA125. Sens Actuator B-Chem. 2017;243:64–71.

    Article  CAS  Google Scholar 

  54. Hasanzadeh M, Sahmani R, Solhi E, Mokhtarzadeh A, Shadjou N, Mahboob S. Ultrasensitive immunoassay of carcinoma antigen 125 in untreated human plasma samples using gold nanoparticles with flower like morphology: A new platform in early stage diagnosis of ovarian cancer and efficient management. Int J Biol Macromol. 2018;119:913–25.

    Article  CAS  PubMed  Google Scholar 

  55. Fan Y, Shi SY, Ma JS, Guo YH. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosens Bioelectron. 2019;135:1–7.

    Article  CAS  PubMed  Google Scholar 

  56. Hassanpour S, Hasanzadeh M, Saadati A, Shadjou N, Soleymani J, Jouyban A. A novel paper based immunoassay of breast cancer specific carbohydrate (CA 15.3) using silver nanoparticles-reduced graphene oxide nano-ink technology: A new platform to construction of microfluidic paper-based analytical devices (mu ADs) towards biomedical analysis. Microchem J. 2019;146:345–58.

    Article  CAS  Google Scholar 

  57. Nunna BB, Mandal D, Lee JU, Singh H, Zhuang SQ, Misra D, Bhuyian MNU, Lee ES. Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor. Nano Converg. 2019;6:3.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ballman KV. Biomarker: Predictive or Prognostic? J Clin Oncol. 2015;33(33):3968–72.

    Article  CAS  PubMed  Google Scholar 

  59. Deng ZC, Wu SM, Wang YL, Shi DL. Circulating tumor cell isolation for cancer diagnosis and prognosis. EBioMedicine. 2022;83:104237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gyorffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comp Struct Biotechnol J. 2021;19:4101–9.

    Article  CAS  Google Scholar 

  61. Long GV, Wilmott JS, Capper D, Preusser M, Zhang YXE, Thompson JF, Kefford RF, von Deimling A, Scolyer RA. Immunohistochemistry Is Highly Sensitive and Specific for the Detection of V600E <i>BRAF</i> Mutation in Melanoma. Am J Surg Pathol. 2013;37(1):61–5.

    Article  PubMed  Google Scholar 

  62. Mohanty SS, Sahoo CR, Padhy RN. Role of hormone receptors and HER2 as prospective molecular markers for breast cancer: An update. Genes Dis. 2022;9(3):648–58.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang YL, Zhao D, Gong CG, Zhang FM, He J, Zhang W, Zhao YL, Sun J. Prognostic role of hormone receptors in endometrial cancer: a systematic review and meta-analysis. World J Surg Oncol. 2015;13:208.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wopereis S, Walter LO, Vieira DSC, Ribeiro AAB, Fernandes BL, Wilkens RS, Santos-Silva MC. Evaluation of ER, PR and HER2 markers by flow cytometry for breast cancer diagnosis and prognosis. Clin Chim Acta. 2021;523:504–12.

    Article  CAS  PubMed  Google Scholar 

  65. Li XQ, Ma FH, Yang MH, Zhang JL. Nanomaterial based analytical methods for breast cancer biomarker detection. Mater Today Adv. 2022;14:100219.

    Article  CAS  Google Scholar 

  66. Murali VP, Karunakaran V, Murali M, Lekshmi A, Kottarathil S, Deepika S, Saritha VN, Ramya AN, Raghu KG, Sujathan K, Maiti KK. A clinically feasible diagnostic spectro-histology built on SERS-nanotags for multiplex detection and grading of breast cancer biomarkers. Biosens Bioelectron. 2023;227:115177.

    Article  CAS  PubMed  Google Scholar 

  67. Li LT, Jiang G, Chen Q, Zheng JN. Ki67 is a promising molecular target in the diagnosis of cancer. Mol Med Rep. 2015;11(3):1566–72.

    Article  CAS  PubMed  Google Scholar 

  68. Inwald EC, Klinkhammer-Schalke M, Hofstädter F, Zeman F, Koller M, Gerstenhauer M, Ortmann O. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat. 2013;139(2):539–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Menon SS, Guruvayoorappan C, Sakthivel KM, Rasmi RR. Ki-67 protein as a tumour proliferation marker. Clin Chim Acta. 2019;491:39–45.

    Article  CAS  PubMed  Google Scholar 

  70. Lashen AG, Toss MS, Mongan NP, Green AR, Rakha EA. The clinical value of progesterone receptor expression in luminal breast cancer: A study of a large cohort with long-term follow-up. Cancer. 2023;129(8):1183–94.

    Article  CAS  PubMed  Google Scholar 

  71. Hao LG, Liu LJ, Meng X, Cui HS, Wang ZX. Electrochemical analysis of Ki67 protein as pancreatic cancer biomarker based on graphene-polydopamine nanocomposite. Int J Electrochem Sci. 2017;12(4):3040–9.

    Article  CAS  Google Scholar 

  72. Stiborek M, Jindrichová L, Meliorisová S, Bednarík A, Prysiazhnyi V, Kroupa J, Houska P, Adamová B, Navrátilová J, Kanicky V, Preisler J. Infrared laser desorption of intact nanoparticles for digital tissue imaging. Anal Chem. 2022;94(51):18114–20.

    Article  CAS  PubMed  Google Scholar 

  73. Ahirwar R, Nahar P. Development of a label-free gold nanoparticle-based colorimetric aptasensor for detection of human estrogen receptor alpha. Anal Bioanal Chem. 2016;408(1):327–32.

    Article  CAS  PubMed  Google Scholar 

  74. Pae JY, Nair RV, Padmanabhan P, Radhakrishnan G, Gulyás B, Matham MV. Gold Nano-urchins enhanced Surface Plasmon Resonance (SPR) BIOSENSORS for the detection of estrogen receptor alpha (ERα). IEEE J Select Topics Quan Electron. 2021;27(5):1–6.

    Article  Google Scholar 

  75. Xing H, Wei TX, Lin X, Dai ZH. Near-infrared MnCuInS/ZnS@BSA and urchin-like Au nanoparticle as a novel donor-acceptor pair for enhanced FRET biosensing. Anal Chim Acta. 2018;1042:71–8.

    Article  CAS  PubMed  Google Scholar 

  76. Borghei YS, Hosseini M, Ganjali MR, Hosseinkhani S. A novel dual-mode and label-free aptasensor based methodology for breast cancer tissue marker targeting. Sens Actuator B-Chem. 2020;315:128084.

    Article  CAS  Google Scholar 

  77. Ranganathan V, Srinivasan S, Singh A, DeRosa MC. An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). Anal Biochem. 2020;588:113471.

    Article  CAS  PubMed  Google Scholar 

  78. Bai LP, Gu CC, Liu JH, Gai PP, Li F. Photofuel cell-based self-powered biosensor for HER2 detection by integration of plasmonic-metal/conjugated molecule hybrids and electrochemical sandwich structure. Biosens Bioelectron. 2023;220:114850.

    Article  CAS  PubMed  Google Scholar 

  79. Xie JJ, Mu ZD, Qing M, Zhou J, Sun SC, Bai LJ. A novel binary luminophore based high-efficient electrochemiluminescence biosensor for ultrasensitive detection of human epidermal growth factor receptor-2. Chem Eng J. 2022;450:138362.

    Article  CAS  Google Scholar 

  80. Ou D, Sun DP, Lin XG, Liang ZX, Zhong YS, Chen ZG. A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J Mat Chem B. 2019;7(23):3661–9.

    Article  CAS  Google Scholar 

  81. Rauf S, Lahcen AA, Aljedaibi A, Beduk T, de Oliveira JI, Salama KN. Gold nanostructured laser-scribed graphene: A new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosens Bioelectron. 2021;180:113116.

    Article  CAS  PubMed  Google Scholar 

  82. Wang XY, Feng YG, Wang AJ, Mei LP, Yuan PX, Luo XL, Feng JJ. A facile ratiometric electrochemical strategy for ultrasensitive monitoring HER2 using polydopamine-grafted-ferrocene/reduced graphene oxide, Au@Ag nanoshuttles and hollow Ni@PtNi yolk-shell nanocages. Sens Actuator B-Chem. 2021;331:129460.

    Article  CAS  Google Scholar 

  83. Zhang JX, Lv CL, Tang C, Wang AJ, Mei LP, Song P, Feng JJ. Sandwich-type ultrasensitive immunosensing of breast cancer biomarker based on core-shell Au@PdAg dog-bone-like nanostructures and Au@PtRh nanorods. Sens Actuator B-Chem. 2023;382:133497.

    Article  CAS  Google Scholar 

  84. Zhang Y, Yang P, Muharnmed MAH, Alsaiari SK, Moosa B, Almalik A, Kumar A, Ringe E, Khashab NM. Tunable and linker free nanogaps in core-shell plasmonic nanorods for selective and quantitative detection of circulating tumor cells by SERS. ACS Appl Mater Interfaces. 2017;9(43):37597–605.

    Article  CAS  PubMed  Google Scholar 

  85. Xiong JR, Dong C, Zhang JJ, Fang XY, Ni J, Gan HY, Li JX, Song CY. DNA walker-powered ratiometric SERS cytosensor of circulating tumor cells with single-cell sensitivity. Biosens Bioelectron. 2022;213:114442.

    Article  CAS  PubMed  Google Scholar 

  86. Feng YQ, Sun F, Chen LZ, Lei JP, Ju HX. Ratiometric electrochemiluminescence detection of circulating tumor cells and cell-surface glycans. J Electroanal Chem. 2016;781:48–55.

    Article  CAS  Google Scholar 

  87. Chen Y, Chen ZH, Fang LS, Weng AB, Luo F, Guo LH, Qiu B, Lin ZY. Electrochemiluminescence sensor for cancer cell detection based on H2O2-triggered stimulus response system. J Anal Test. 2020;4(2):128–35.

    Article  CAS  Google Scholar 

  88. Tang ST, Shen HW, Hao YX, Huang ZL, Tao YY, Peng Y, Guo YC, Xie GM, Feng WL. A novel cytosensor based on Pt@Ag nanoflowers and AuNPs/Acetylene black for ultrasensitive and highly specific detection of Circulating Tumor Cells. Biosens Bioelectron. 2018;104:72–8.

    Article  CAS  PubMed  Google Scholar 

  89. Cui AP, Zhang JW, Bai WQ, Sun HP, Bao L, Ma F, Li Y. Signal-on electrogenerated chemiluminescence biosensor for ultrasensitive detection of microRNA-21 based on isothermal strand-displacement polymerase reaction and bridge DNA-gold nanoparticles. Biosens Bioelectron. 2019;144:111664.

    Article  PubMed  Google Scholar 

  90. Parchekani J, Hashemzadeh H, Allahverdi A, Siampour H, Abbasian S, Moshaii A, Naderi-Manesh H. Zepto molar miRNA-21 detection in gold nano-islands platform toward early cancer screening. Sens Bio-Sens Res. 2021;34:100449.

    Article  Google Scholar 

  91. Kong LY, Lv SZ, Qiao ZJ, Yan YC, Zhang J, Bi S. Metal-organic framework nanoreactor-based electrochemical biosensor coupled with three-dimensional DNA walker for label-free detection of microRNA. Biosens Bioelectron. 2022;207:114188.

    Article  CAS  PubMed  Google Scholar 

  92. Weng SY, Lin D, Lai SX, Tao H, Chen T, Peng M, Qiu SF, Feng SY. Highly sensitive and reliable detection of microRNA for clinically disease surveillance using SERS biosensor integrated with catalytic hairpin assembly amplification technology. Biosens Bioelectron. 2022;208:114236.

    Article  CAS  PubMed  Google Scholar 

  93. Wang YH, Shao ZS, Cheng C, Wang JL, Song Z, Song WJ, Zheng F, Wang HS. Fluorescent oligonucleotide indicators for ratiometric microRNA sensing on metal-organic frameworks. Chem Eng J. 2022;437:135296.

    Article  CAS  Google Scholar 

  94. Liu L, Zhu SY, Wei YM, Liu XL, Jiao SL, Yang JJ. Ultrasensitive detection of miRNA-155 based on controlled fabrication of AuNPs@MoS2 nanostructures by atomic layer deposition. Biosens Bioelectron. 2019;144:111660.

    Article  CAS  PubMed  Google Scholar 

  95. Borghei YS, Hosseini M, Ganjali MR. Oxidase-like catalytic activity of Cys-AuNCs upon visible light irradiation and its application for visual miRNA detection. Sens Actuator B-Chem. 2018;273:1618–26.

    Article  CAS  Google Scholar 

  96. Joosse SA, Gorges TM, Pantel K. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med. 2015;7(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  97. Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, El-Rifai W, Bedognetti D, Batra SK, Haris M, Bhat AA, Macha MA. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer. 2022;21(1):79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shen ZY, Wu AG, Chen XY. Current detection technologies for circulating tumor cells. Chem Soc Rev. 2017;46(8):2038–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pallares RM, Thanh NTK, Su XD. Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale. 2019;11(46):22152–71.

    Article  CAS  PubMed  Google Scholar 

  100. Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–7.

    Article  CAS  PubMed  Google Scholar 

  101. Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;14(4):047662.

    Article  Google Scholar 

  102. Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther. 2017;172:34–49.

    Article  CAS  PubMed  Google Scholar 

  103. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

    Article  CAS  PubMed  Google Scholar 

  104. Cao Y, Ma C, Zhu JJ. DNA technology-assisted signal amplification strategies in electrochemiluminescence bioanalysis. J Anal Test. 2021;5(2):95–111.

    Article  Google Scholar 

  105. Mollasalehi H, Shajari E. A colorimetric nano-biosensor for simultaneous detection of prevalent cancers using unamplified cell-free ribonucleic acid biomarkers. Bioorganic Chem. 2021;107:104605.

    Article  CAS  Google Scholar 

  106. Pourmadadi M, Eshaghi MM, Ostovar S, Mohammadi Z, Sharma RK, Paiva-Santos AC, Rahmani E, Rahdar A, Pandey S. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug delivery applications. J Drug Del Sci Technol. 2023;82:104357.

    Article  CAS  Google Scholar 

  107. Fan M, Han Y, Gao S, Yan H, Cao L, Li Z, Liang X-J, Zhang J. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics. 2020;10(11):4944–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Geng J, Li K, Pu K-Y, Ding D, Liu B. Conjugated polymer and gold nanoparticle co-loaded plga nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging. Small. 2012;8(15):2421–9.

    Article  CAS  PubMed  Google Scholar 

  109. Wu T, Chen K, Lai W, Zhou H, Wen X, Chan HF, Li M, Wang H, Tao Y. Bovine serum albumin-gold nanoclusters protein corona stabilized polystyrene nanoparticles as dual-color fluorescent nanoprobes for breast cancer detection. Biosens Bioelectron. 2022;215:114575–114575.

    Article  CAS  PubMed  Google Scholar 

  110. Loo C, Lowery A, Halas NJ, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709–11.

    Article  CAS  PubMed  Google Scholar 

  111. Ning P, Chen Y, Bai Q, Xu C, Deng C, Cheng Q, Cheng Y. Multimodal imaging-guided spatiotemporal tracking of photosensitive stem cells for breast cancer treatment. ACS Appl Mater Interfaces. 2022;14(6):7551–64.

    Article  CAS  PubMed  Google Scholar 

  112. Wang R, Deng J, He D, Yang E, Yang W, Shi D, Jiang Y, Qiu Z, Webster TJ, Shen Y. PEGylated hollow gold nanoparticles for combined X-ray radiation and photothermal therapy in vitro and enhanced CT imaging in vivo. Nanomed-Nanotechnol Biol Med. 2019;16:195–205.

    Article  CAS  Google Scholar 

  113. Zhang Z, Lo H, Zhao X, Li W, Wu K, Zeng F, Li S, Sun H. Mild photothermal/radiation therapy potentiates ferroptosis effect for ablation of breast cancer via MRI/PA imaging guided all-in-one strategy. J Nanobiotechnol. 2023;21(1):150.

    Article  CAS  Google Scholar 

  114. Naha PC, Lau KC, Hsu JC, Hajfathalian M, Mian S, Chhour P, Uppuluri L, McDonald ES, Maidment ADA, Cormode DP. Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography. Nanoscale. 2016;8(28):13740–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang C, Chen J, Talavage T, Irudayaraj J. Gold nanorod/Fe3O4 nanoparticle “Nano-Pearl-Necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angewandte Chemie-Int Edit. 2009;48(15):2759–63.

    Article  CAS  Google Scholar 

  116. Tang S, Li R, Luo T, Huang T, Lu X, Wu X, Dong Y, Wu C, Xu K, Wang Y. Preparation of Gd-doped AuNBP@mSiO2 nanocomposites for the MR imaging, drug delivery and chemo-photothermal synergistic killing of breast cancer cells. Rsc Advances. 2023;13(34):23976–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (21974019, 92061121, 82027806), Jiangsu Funding Program for Excellent Postdoctoral Talent (2023ZB204), and China Postdoctoral Science Foundation (2022M720724).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuemei Wang or Hui Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Luminescent Nanomaterials for Biosensing and Bioimaging with guest editors Li Shang, Chih-Ching Huang, and Xavier Le Guével.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Xiong, H., Wang, X. et al. Gold nanomaterials: important vectors in biosensing of breast cancer biomarkers. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05151-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05151-w

Keywords

Navigation