Skip to main content
Log in

Development of a label-free gold nanoparticle-based colorimetric aptasensor for detection of human estrogen receptor alpha

  • Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The increasing demand for easily available and low-cost diagnostics has fuelled the development of aptasensors as platforms for rapid, sensitive, and point-of-care testing of target analytes. Recently, gold nanoparticle (AuNP)-based aptasensors have attracted wide recognition owing to their color transition properties which allow real-time rapid sensing of targets. In this study, we utilized the color transition property of aptamer-functionalized AuNPs to detect and quantify estrogen receptor alpha (ERα), a key biomarker protein in breast cancer. We found that the coating of AuNPs with unmodified ERα-RNA aptamer (GGGGUCAAGGUGACCCC) makes them resistant to salt-induced aggregation. However, addition of ERα to the aptamer-protected AuNPs results in their spontaneous aggregation as evident from a color transition from wine red to deep blue. On the basis of this, we developed an ERα aptasensor, with limits of detection and quantification of 0.64 and 2.16 ng/mL, respectively; the aptasensor can efficiently detect and quantify ERα in a working range of 10 ng/mL–5μg/mL protein. Validation of the aptasensor on cellular extracts of ERα-positive MCF-7 and ERα-deficient MDA-MB-231 breast cancer cells showed a target-selective response in ERα-positive samples but not in cellular extracts of ERα-deficient breast cancer cells. Further, the small size and simple fabrication chemistry of aptamers provide an additional benefit to make the ERα aptasensor a potentially useful and cost-effective tool in point-of-care analyses of ERα.

Schematic representation of developed AuNP-based ER-aptasensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cho M, Han MS, Ban C (2008) Detection of mismatched DNAs via the binding affinity of MutS using a gold nanoparticle-based competitive colorimetric method. Chem Commun 38:4573–4575

    Article  Google Scholar 

  2. Thompson DG, Enright A, Faulds K, Smith WE, Graham D (2008) Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal Chem 80:2805–2810

    Article  CAS  Google Scholar 

  3. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294

    Article  CAS  Google Scholar 

  4. Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452

    Article  CAS  Google Scholar 

  5. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  6. Alivasatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–661

    Article  Google Scholar 

  7. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  8. Liu J, Bai W, Niu S, Zhu C, Yang S, Chen A (2014) Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4:7571. doi:10.1038/srep07571

    Article  CAS  Google Scholar 

  9. Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallee-Belisle A, Gong X, Yuen JD, Hsu BB, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 107:10837–10841

    Article  CAS  Google Scholar 

  10. Li HX, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126(35):10958–10961

    Article  CAS  Google Scholar 

  11. Liu JW, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126(39):12298–12305

    Article  CAS  Google Scholar 

  12. Wang L, Liu X, Hu X, Song S, Fan C (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun 3780–3782. doi:10.1039/B607448K

  13. Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101(39):14036–14039

    Article  CAS  Google Scholar 

  14. Ali S, Coombes RC (2000) Estrogen receptor alpha in human breast cancer: occurrence and significance. J Mammary Gland Biol Neoplasia 5:271–281

    Article  CAS  Google Scholar 

  15. Weigel MT, Dowsett M (2010) Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer 17:R245–R262

    Article  CAS  Google Scholar 

  16. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90:1371–1388

    Article  CAS  Google Scholar 

  17. Sawaki M, Wada M, Sato Y, Mizuno Y, Kobayashi H, Yokoi K, Yoshihara M, Kamei K, Ohno M, Imai T (2012) High-dose toremifene as first-line treatment of metastatic breast cancer resistant to adjuvant aromatase inhibitor: a multicenter phase II study. Oncol Lett 3:61–65

    CAS  Google Scholar 

  18. Usami M, Mitsunaga K, Ohno Y (2002) Estrogen receptor binding assay of chemicals with a surface plasmon resonance biosensor. J Steroid Biochem Mol Biol 81:47–55

    Article  CAS  Google Scholar 

  19. De S, Macara IG, Lannigan DA (2005) Novel biosensors for the detection of estrogen receptor ligands. J Steroid Biochem Mol Biol 96:235–244

    Article  CAS  Google Scholar 

  20. Kim BK, Li J, Im J-E, Ahn KS, Park TS, Cho SI, Kim YR, Lee WY (2012) Impedometric estrogen biosensor based on estrogen receptor alpha-immobilized gold electrode. J Electroanal Chem 671:106–111

    Article  CAS  Google Scholar 

  21. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252

    Article  CAS  Google Scholar 

  22. He YQ, Liu SP, Kong L, Liu ZF (2005) A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim Acta A 61:2861–2866

    Article  Google Scholar 

Download references

Acknowledgments

R. A. thanks the Council of Scientific and Industrial Research, Government of India for the award of a senior research fellowship. This work was financially supported by CARDIOMED project no. BSC 0122 of the Council of Scientific and Industrial Research, Government of India, New Delhi, India.

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip Nahar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahirwar, R., Nahar, P. Development of a label-free gold nanoparticle-based colorimetric aptasensor for detection of human estrogen receptor alpha. Anal Bioanal Chem 408, 327–332 (2016). https://doi.org/10.1007/s00216-015-9090-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9090-7

Keywords

Navigation