Skip to main content
Log in

A pH-Regulated Colorimetric Sensor Array for Discrimination of Biothiols Based on Two Different-Sized β-Cyclodextrin-Functionalized AuNPs

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

The abnormal changes of biothiols are directly related to health condition of human body, and the effective identification and quantification of biothiols is of great significance for screening and diagnosis of disease. This study described the development of a pH-regulated colorimetric sensor array for discrimination of five kinds of biothiols including cysteine (Cys), glutathione (GSH), homocysteine (Hcy), cysteamine (CA) and N-acetylcysteine (NAC). The proposed sensor array was established using 5-nm- and 20-nm-sized β-cyclodextrin-functionalized gold nanoparticles (β-CD@AuNPs) as nonspecific receptor and signal transduction elements. Due to the different binding affinity between biothiols and β-CD@AuNPs in various pH environments, the different aggregation behaviors of nanoparticles produced unique colorimetric response patterns, which were able to be distinguished by bare eyes and UV–vis spectrophotometer. Accordingly, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed for pattern recognition and generated a clustering map for a clear differentiation of biothiols at the level of μmol/L. Furthermore, it can be proved that the method was successfully applied to the analysis of biothiols in human urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data supporting the finding reported herein are available on reasonable request from the corresponding author.

References

  1. Zhang Y, Li Y, Yan XP. Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids. Anal Chem. 2009;81:5001–7.

    Article  CAS  PubMed  Google Scholar 

  2. Li C, Wu C, Zheng J, Lai J, Zhang C, Zhao Y. LSPR sensing of molecular biothiols based on noncoupled gold nanorods. Langmuir. 2010;26:9130–5.

    Article  CAS  PubMed  Google Scholar 

  3. Shen TW, Ou TK, Lin BY, Chien YH. Plasmonic gold nanomaterials as photoacoustic signal resonant enhancers for cysteine detection. Nanomaterials. 2021;11(8):1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mirac Dizman H, Kazancioglu EO, Shigemune T, Takahara S, Arsu N. High sensitivity colorimetric determination of L-cysteine using gold nanoparticles functionalized graphene oxide prepared by photochemical reduction method. Spectrochim Acta A Mol Biomol Spectrosc. 2022;264: 120294.

    Article  CAS  PubMed  Google Scholar 

  5. Deng H, Wu Z, Zhao Z, Zhu L, Tang M, Yu R, Wang J. Dual-channel fluorescent signal readout strategy for cysteine sensing. Talanta. 2021;231: 122331.

    Article  CAS  PubMed  Google Scholar 

  6. She ZP, Wang WX, Mao GJ, Jiang WL, Wang ZQ, Li Y, Li CY. A near-infrared fluorescent probe for accurately diagnosing cancer by sequential detection of cysteine and H+. Chem Commun. 2021;57:4811–4.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Zhu W, Xing Y, Jia J, Tang Y. B vitamins and prevention of cognitive decline and incident dementia: a systematic review and meta-analysis. Nutr Rev. 2022;80:931–49.

    Article  PubMed  Google Scholar 

  8. Chen S, Yang F, Xu T, Wang Y, Zhang K, Fu G, Zhang W. Appraising the causal association of plasma homocysteine levels with atrial fibrillation risk: A two-sample mendelian randomization study. Front Genet. 2021;12: 619536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Han H, Wang F, Chen J, Li X, Fu G, Zhou J, Zhou D, Wu W, Chen H. Changes in biothiol levels are closely associated with Alzheimer’s disease. J Alzheimer’s Dis. 2021;82:527–40.

    Article  CAS  Google Scholar 

  10. Wang H, Hua H, Tang H, Li Y. Dual-signaling amplification strategy for glutathione sensing by using single gold nanoelectrodes. Anal Chim Acta. 2021;1166: 338579.

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Liu Z, Xiao J, Li C, Wang J, Xiao X, Huang H, Shrestha B, Tang L, Deng K, Zhou H. Visual quantitative detection of glutathione and cholesterol in human blood based on the thiol–ene click reaction-triggered wettability change of the interface. Anal Chem. 2021;93:7292–9.

    Article  CAS  PubMed  Google Scholar 

  12. Jia P, Hou JJ, Yang KR, Wang L. On-off-on fluorescent sensor for glutathione based on bifunctional vanadium oxide quantum dots induced spontaneous formation of MnO2 nanosheets. Microchim Acta. 2021;188:299.

    Article  CAS  Google Scholar 

  13. Bronowicka-Adamska P, Zagajewski J, Czubak J, Wróbel M. RP-HPLC method for quantitative determination of cystathionine, cysteine and glutathione: an application for the study of the metabolism of cysteine in human brain. J Chromatogr B. 2011;879:2005–9.

    Article  CAS  Google Scholar 

  14. Espina JG, Montes-Bayón M, Blanco-González E, Sanz-Medel A. Determination of reduced homocysteine in human serum by elemental labelling and liquid chromatography with ICP-MS and ESI-MS detection. Anal Bioanal Chem. 2015;407:7899–906.

    Article  CAS  PubMed  Google Scholar 

  15. Carlucci F, Tabucchi A. Capillary electrophoresis in the evaluation of aminothiols in body fluids. J Chromatogr B. 2009;877:3347–57.

    Article  CAS  Google Scholar 

  16. Munyemana JC, Chen J, Wei X, Ali MC, Han Y, Qiu H. Deep eutectic solvent-assisted facile synthesis of copper hydroxide nitrate nanosheets as recyclable enzyme-mimicking colorimetric sensor of biothiols. Anal Bioanal Chem. 2020;412:4629–38.

    Article  CAS  PubMed  Google Scholar 

  17. Xue G, Yu S, Qiang Z, Xiuying L, Tang L, Jiangrong L. Application of maleimide modified graphene quantum dots and porphyrin fluorescence resonance energy transfer in the design of “turn-on” fluorescence sensors for biothiols. Anal Chim Acta. 2020;1108:46–53.

    Article  CAS  PubMed  Google Scholar 

  18. Karimi A, Husain SW, Hosseini M, Azar PA, Ganjali MR. A sensitive signal-on electrochemiluminescence sensor based on a nanocomposite of polypyrrole-Gd2O3 for the determination of L-cysteine in biological fluids. Mikrochim Acta. 2020;187:398.

    Article  CAS  PubMed  Google Scholar 

  19. Fan YL, Lu YF, Ding XY, Wang NH, Xu F, Shi G, Zhang M. Fluorescent pattern recognition of metal ions by nanoparticles of bovine serum albumin as a chemical nose/tongue. Analyst. 2020;145:6222–6.

    Article  CAS  PubMed  Google Scholar 

  20. Fan J, Qi L, Han H, Ding L. Array-based discriminative optical biosensors for identifying multiple proteins in aqueous solution and biofluids. Front Chem. 2020;8: 572234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang F, Na N, Ouyang J. A catalytic-regulated gold nanorods etching process as a receptor with multiple readouts for protein detection. Sens Actuators B. 2020;318(1):128215.

    Article  CAS  Google Scholar 

  22. Yuan D, Liu JJ, Yan HH, Li CM, Huang CZ, Wang J. Label-free gold nanorods sensor array for colorimetric detection and discrimination of biothiols in human urine samples. Talanta. 2019;203:220–6.

    Article  CAS  PubMed  Google Scholar 

  23. He MQ, Chen S, Shi W, Zhang XW, Yu YL, Wang JH. All-in-one fractal nanoplasmonic array for visual discrimination of biomolecules and microorganisms. Sens Actuators B. 2021;338:129832.

    Article  CAS  Google Scholar 

  24. Zhao Y, Huang Y, Zhu H, Zhu Q, Xia Y. Three-in-one: sensing, self-assembly, and cascade catalysis of cyclodextrin modified gold nanoparticles. J Am Chem Soc. 2016;138:16645–54.

    Article  CAS  PubMed  Google Scholar 

  25. Wen D, Liu W, Herrmann AK, Haubold D, Holzschuh M, Simon F, Eychmuller A. Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles. Small. 2016;12:2439–42.

    Article  CAS  PubMed  Google Scholar 

  26. Liu YL, Male KB, Bouvrette P, Luong JHT. Control of the size and distribution of gold nanoparticles by unmodified cyclodextrins. Chem Mater. 2003;15:4172–80.

    Article  CAS  Google Scholar 

  27. Ma Q, Fang X, Zhang J, Zhu L, Rao X, Lu Q, Sun Z, Yu H, Zhang Q. Discrimination of cysteamine from mercapto amino acids through isoelectric point-mediated surface ligand exchange of β-cyclodextrin-modified gold nanoparticles. J Mater Chem B. 2020;8:4039–45.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang S, Zhou H, Kong N, Wang Z, Fu H, Zhang Y, Xiao Y, Yang W, Yan F. l-cysteine-modified chiral gold nanoparticles promote periodontal tissue regeneration. Bioact Mater. 2021;6:3288–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Basu S, Ghosh SK, Kundu S, Panigrahi S, Praharaj S, Pande S, Jana S, Pal T. Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling. J Colloid Interface Sci. 2007;313:724–34.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang FX, Han L, Israel LB, Daras JG, Maye MM, Ly NK, Zhong CJ. Colorimetric detection of thiol-containing amino acids using gold nanoparticles. Analyst. 2002;127:462–5.

    Article  CAS  PubMed  Google Scholar 

  31. Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X. One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-trinitrophenol in aqueous solution. Anal Chem. 2017;89:3001–8.

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Zhu G, Zeng W, Yi Y, Lv B, Qian J, Zhang D. Silicon quantum dot-coated onto gold nanoparticles as an optical probe for colorimetric and fluorometric determination of cysteine. Mikrochim Acta. 2019;186:98.

    Article  PubMed  Google Scholar 

  33. Li P, Lee SM, Kim HY, Kim S, Park S, Park KS, Park HG. Colorimetric detection of individual biothiols by tailor made reactions with silver nanoprisms. Sci Rep. 2021;11:3937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Botteon CEA, Silva LB, Ccana-Ccapatinta GV, Silva TS, Ambrosio SR, Veneziani RCS, Bastos JK, Marcato PD. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci Rep. 2021;11:1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (82073603); Jilin Province Science and Technology Development Plan Item (20200602010ZP); Health Commission of Jilin Province (2020Q011) and Norman Bethune Health Science Center of Jilin University (2020B39).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Li or Juan Wang.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3922 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhao, C., Wei, S. et al. A pH-Regulated Colorimetric Sensor Array for Discrimination of Biothiols Based on Two Different-Sized β-Cyclodextrin-Functionalized AuNPs. J. Anal. Test. 7, 101–109 (2023). https://doi.org/10.1007/s41664-023-00249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-023-00249-z

Keywords

Navigation